Molly examples
The best examples for learning how the package works are in the Molly documentation section. Here we give further examples, showing what you can do with the package. Each is a self-contained block of code. Made something cool yourself? Make a PR to add it to this page.
Making and breaking bonds
There is an example of mutable atom properties in the main docs, but what if you want to make and break bonds during the simulation? In this case you can use a PairwiseInteraction
to make, break and apply the bonds. The partners of the atom can be stored in the atom type. We make a logger to record when the bonds are present, allowing us to visualize them with the connection_frames
keyword argument to visualize
(this can take a while to plot).
using Molly
using GLMakie
using LinearAlgebra
struct BondableAtom
i::Int
mass::Float64
σ::Float64
ϵ::Float64
partners::Set{Int}
end
Molly.mass(ba::BondableAtom) = ba.mass
struct BondableInteraction <: PairwiseInteraction
nl_only::Bool
prob_formation::Float64
prob_break::Float64
dist_formation::Float64
b0::Float64
kb::Float64
end
function Molly.force(inter::BondableInteraction,
dr,
coord_i,
coord_j,
atom_i,
atom_j,
box_size)
# Break bonds randomly
if atom_j.i in atom_i.partners && rand() < inter.prob_break
delete!(atom_i.partners, atom_j.i)
delete!(atom_j.partners, atom_j.i)
end
# Make bonds between close atoms randomly
r2 = sum(abs2, dr)
if r2 < inter.b0 * inter.dist_formation && rand() < inter.prob_formation
push!(atom_i.partners, atom_j.i)
push!(atom_j.partners, atom_j.i)
end
# Apply the force of a harmonic bond
if atom_j.i in atom_i.partners
c = inter.kb * (norm(dr) - inter.b0)
fdr = -c * normalize(dr)
return fdr
else
return zero(coord_i)
end
end
struct BondLogger
n_steps::Int
bonds::Vector{BitVector}
end
function Molly.log_property!(logger::BondLogger, s, neighbors, step_n)
if step_n % logger.n_steps == 0
bonds = BitVector()
for i in 1:length(s)
for j in 1:(i - 1)
push!(bonds, j in s.atoms[i].partners)
end
end
push!(logger.bonds, bonds)
end
end
n_atoms = 200
box_size = SVector(10.0, 10.0)
n_steps = 2_000
temp = 1.0
atoms = [BondableAtom(i, 1.0, 0.1, 0.02, Set([])) for i in 1:n_atoms]
coords = place_atoms(n_atoms, box_size, 0.1)
velocities = [velocity(1.0, temp; dims=2) for i in 1:n_atoms]
pairwise_inters = (
SoftSphere(nl_only=true),
BondableInteraction(true, 0.1, 0.1, 1.1, 0.1, 2.0),
)
neighbor_finder = DistanceNeighborFinder(
nb_matrix=trues(n_atoms, n_atoms),
n_steps=10,
dist_cutoff=2.0,
)
simulator = VelocityVerlet(dt=0.02, coupling=AndersenThermostat(temp, 5.0))
sys = System(
atoms=atoms,
pairwise_inters=pairwise_inters,
coords=coords,
velocities=velocities,
box_size=box_size,
neighbor_finder=neighbor_finder,
loggers=Dict(
"coords" => CoordinateLogger(Float64, 20; dims=2),
"bonds" => BondLogger(20, []),
),
force_units=NoUnits,
energy_units=NoUnits,
)
simulate!(sys, simulator, n_steps)
connections = Tuple{Int, Int}[]
for i in 1:length(sys)
for j in 1:(i - 1)
push!(connections, (i, j))
end
end
visualize(sys.loggers["coords"],
box_size,
"sim_mutbond.mp4";
connections=connections,
connection_frames=sys.loggers["bonds"].bonds,
markersize=0.1)
Comparing forces to AD
The force is the negative derivative of the potential energy with respect to position. MD packages, including Molly, implement the force functions directly for performance. However it is also possible to compute the forces using AD. Here we compare the two approaches for the Lennard-Jones potential and see that they give the same result.
using Molly
using Zygote
using GLMakie
inter = LennardJones(force_units=NoUnits, energy_units=NoUnits)
box_size = SVector(5.0, 5.0, 5.0)
a1, a2 = Atom(σ=0.3, ϵ=0.5), Atom(σ=0.3, ϵ=0.5)
function force_direct(dist)
c1 = SVector(1.0, 1.0, 1.0)
c2 = SVector(dist + 1.0, 1.0, 1.0)
vec = vector(c1, c2, box_size)
F = force(inter, vec, c1, c2, a1, a2, box_size)
return F[1]
end
function force_grad(dist)
grad = gradient(dist) do dist
c1 = SVector(1.0, 1.0, 1.0)
c2 = SVector(dist + 1.0, 1.0, 1.0)
vec = vector(c1, c2, box_size)
potential_energy(inter, vec, c1, c2, a1, a2, box_size)
end
return -grad[1]
end
dists = collect(0.2:0.01:1.2)
forces_direct = force_direct.(dists)
forces_grad = force_grad.(dists)
f = Figure(resolution=(600, 400))
ax = Axis(
f[1, 1],
xlabel="Distance / nm",
ylabel="Force / kJ * mol^-1 * nm^-1",
title="Comparing gradients from direct calculation and AD",
)
scatter!(ax, dists, forces_direct, label="Direct", markersize=8)
scatter!(ax, dists, forces_grad , label="AD" , markersize=8, marker='x')
xlims!(ax, low=0)
ylims!(ax, -6.0, 10.0)
axislegend()
save("force_comparison.png", f)