Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#796"{DFTK.var"#anderson#795#797"{Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02662833100761879 + 0.018528092841645156im 0.013258808932723336 + 0.0020128522957229404im … -0.020371467851345013 + 0.009033751608675028im 0.005592553985768876 + 0.04265631858093828im; 0.004389295961951098 - 0.0055459501717538915im -0.00806110400584548 + 0.009727872156862319im … -0.012017009395715591 + 0.02448884358025428im 0.015952817948212114 + 0.02146319850216114im; … ; -0.0007181240357019938 + 0.013366503049305766im 0.002120673698501187 + 0.01731800403509919im … 0.05195008804985583 + 0.022456015372806573im 0.015464332530705201 - 0.0017999283377250165im; 0.009015403710088035 + 0.03703046766379564im 0.01654354410803442 + 0.018868162633487513im … 0.004021477724269179 - 0.015283466929987066im -0.018763729806503877 + 0.030231418183311525im;;; 0.03478284282595953 - 0.03428752368024045im 0.018878198345974352 + 0.00021099920260945863im … 0.04459071331661807 + 0.056362562980203375im 0.1510055121733922 - 0.011510039143434913im; -0.014810432251803785 - 0.016239088712644296im -0.01954063185069839 - 0.005004888511641818im … 0.11803221759294451 - 0.003927088038239122im 0.08018520845183542 - 0.11788784550186346im; … ; -0.008158292639135728 + 0.012356814540586163im -0.03440310910919836 + 0.02563850338243849im … 0.01779493316789161 - 0.03214602550863478im -0.015056798977382501 + 0.009560317411027601im; 0.020789916872773737 + 0.01586113423478767im -0.005985827463915398 + 0.05149159880168791im … -0.025383905537948073 - 0.012975005933456619im 0.03613254321455346 + 0.054466903174625186im;;; -0.011759099112948878 - 0.04064752235855003im -0.039792518066521496 - 0.032939122960128034im … 0.13046666919973332 - 0.017199398092930432im 0.08191052537071333 - 0.1295197501876114im; 0.03823700333450245 + 0.048127836677371805im -0.06262390643987154 + 0.027911365727538134im … 0.06751823711334014 - 0.10331650645162062im -0.028125244416313335 - 0.07643957729954079im; … ; -0.028524172517304353 + 0.015496260743622634im -0.022243329931928013 + 0.051126327068670444im … -0.013608950469091694 + 0.021060910979537016im 0.007349218226960642 + 0.023365760802471873im; 0.0066064970962579905 - 0.009027940974913932im 0.009178474820560018 + 0.006853313323021266im … 0.04285775100875906 + 0.05017665473286225im 0.07498868216283949 - 0.006812868746830223im;;; … ;;; 0.08364057907053415 - 0.18307825044681192im -0.03537783926539588 - 0.06541526268559765im … 0.004212320210728683 + 0.018029350155940226im 0.13891841348295975 - 0.041572585876885296im; -0.03290978605520158 - 0.06206771960809987im 0.042325332605220714 + 0.026125295997958053im … -0.010441896759140982 - 0.005622296878104692im 0.022022081014313293 - 0.07855082471157798im; … ; 0.05409784565594652 + 0.06415656603954742im 0.10068307724076209 - 0.021302472706515772im … -0.014455729487557648 - 0.012253838238749577im -0.043422757247619806 - 0.014876045800665066im; 0.18899604232366798 - 0.04570548145117677im 0.05789131080327424 - 0.12665263866064563im … -0.035721263175248215 + 0.008431911255583038im 0.04899745303661736 + 0.060503387262735284im;;; -0.03630381325417684 - 0.02767632316571751im 0.06561318039903749 + 0.05193870948358792im … -0.09451021003047061 + 0.02166467538633505im 0.0053747262103462645 - 0.05111913849651409im; 0.06627716829467212 + 0.055037849352836926im 0.1613381163236691 - 0.0497303922716741im … -0.0669685011115841 + 0.08177530700872333im -0.019150366930674918 + 0.027780998924168264im; … ; 0.13882593275628471 - 0.005616333429555614im 0.047971619505964985 - 0.08098379223420223im … -0.02857004838668747 + 0.07893247697253691im 0.029280548424086263 + 0.07984932206754194im; 0.06464255930188684 - 0.12574701363110435im -0.03002702246212034 - 0.043915149344486176im … -0.05165766923633529 + 0.006656084522608859im 0.07336939618381663 + 8.307393081221932e-5im;;; 0.026295397674180664 + 0.04366569635715849im 0.12537514942584058 - 0.025749128719728405im … -0.08022352884173929 + 0.104836760526868im -0.020218802559629934 + 0.03955624804692069im; 0.07768328669860605 - 0.01309916574152996im 0.03992228249481433 - 0.09668694972708158im … -0.0013656801968612436 + 0.0787879469349359im -0.006622574226997871 + 0.02338685339554633im; … ; 0.04312454928248188 - 0.03310354550948466im -0.006966014654107195 - 0.009419681374635726im … -0.010315244125754524 + 0.060634600370084904im 0.04121190168201612 + 0.03866888225573169im; -0.015616152662243057 + 0.0140677764189007im 0.03422429989631994 + 0.03943675993070868im … -0.08956785141550322 + 0.042925294267220124im -0.02567637009333751 + 0.038147169939613604im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02662833100761879 + 0.018528092841645156im 0.013258808932723336 + 0.0020128522957229404im … -0.020371467851345013 + 0.009033751608675028im 0.005592553985768876 + 0.04265631858093828im; 0.004389295961951098 - 0.0055459501717538915im -0.00806110400584548 + 0.009727872156862319im … -0.012017009395715591 + 0.02448884358025428im 0.015952817948212114 + 0.02146319850216114im; … ; -0.0007181240357019938 + 0.013366503049305766im 0.002120673698501187 + 0.01731800403509919im … 0.05195008804985583 + 0.022456015372806573im 0.015464332530705201 - 0.0017999283377250165im; 0.009015403710088035 + 0.03703046766379564im 0.01654354410803442 + 0.018868162633487513im … 0.004021477724269179 - 0.015283466929987066im -0.018763729806503877 + 0.030231418183311525im;;; 0.03478284282595953 - 0.03428752368024045im 0.018878198345974352 + 0.00021099920260945863im … 0.04459071331661807 + 0.056362562980203375im 0.1510055121733922 - 0.011510039143434913im; -0.014810432251803785 - 0.016239088712644296im -0.01954063185069839 - 0.005004888511641818im … 0.11803221759294451 - 0.003927088038239122im 0.08018520845183542 - 0.11788784550186346im; … ; -0.008158292639135728 + 0.012356814540586163im -0.03440310910919836 + 0.02563850338243849im … 0.01779493316789161 - 0.03214602550863478im -0.015056798977382501 + 0.009560317411027601im; 0.020789916872773737 + 0.01586113423478767im -0.005985827463915398 + 0.05149159880168791im … -0.025383905537948073 - 0.012975005933456619im 0.03613254321455346 + 0.054466903174625186im;;; -0.011759099112948878 - 0.04064752235855003im -0.039792518066521496 - 0.032939122960128034im … 0.13046666919973332 - 0.017199398092930432im 0.08191052537071333 - 0.1295197501876114im; 0.03823700333450245 + 0.048127836677371805im -0.06262390643987154 + 0.027911365727538134im … 0.06751823711334014 - 0.10331650645162062im -0.028125244416313335 - 0.07643957729954079im; … ; -0.028524172517304353 + 0.015496260743622634im -0.022243329931928013 + 0.051126327068670444im … -0.013608950469091694 + 0.021060910979537016im 0.007349218226960642 + 0.023365760802471873im; 0.0066064970962579905 - 0.009027940974913932im 0.009178474820560018 + 0.006853313323021266im … 0.04285775100875906 + 0.05017665473286225im 0.07498868216283949 - 0.006812868746830223im;;; … ;;; 0.08364057907053415 - 0.18307825044681192im -0.03537783926539588 - 0.06541526268559765im … 0.004212320210728683 + 0.018029350155940226im 0.13891841348295975 - 0.041572585876885296im; -0.03290978605520158 - 0.06206771960809987im 0.042325332605220714 + 0.026125295997958053im … -0.010441896759140982 - 0.005622296878104692im 0.022022081014313293 - 0.07855082471157798im; … ; 0.05409784565594652 + 0.06415656603954742im 0.10068307724076209 - 0.021302472706515772im … -0.014455729487557648 - 0.012253838238749577im -0.043422757247619806 - 0.014876045800665066im; 0.18899604232366798 - 0.04570548145117677im 0.05789131080327424 - 0.12665263866064563im … -0.035721263175248215 + 0.008431911255583038im 0.04899745303661736 + 0.060503387262735284im;;; -0.03630381325417684 - 0.02767632316571751im 0.06561318039903749 + 0.05193870948358792im … -0.09451021003047061 + 0.02166467538633505im 0.0053747262103462645 - 0.05111913849651409im; 0.06627716829467212 + 0.055037849352836926im 0.1613381163236691 - 0.0497303922716741im … -0.0669685011115841 + 0.08177530700872333im -0.019150366930674918 + 0.027780998924168264im; … ; 0.13882593275628471 - 0.005616333429555614im 0.047971619505964985 - 0.08098379223420223im … -0.02857004838668747 + 0.07893247697253691im 0.029280548424086263 + 0.07984932206754194im; 0.06464255930188684 - 0.12574701363110435im -0.03002702246212034 - 0.043915149344486176im … -0.05165766923633529 + 0.006656084522608859im 0.07336939618381663 + 8.307393081221932e-5im;;; 0.026295397674180664 + 0.04366569635715849im 0.12537514942584058 - 0.025749128719728405im … -0.08022352884173929 + 0.104836760526868im -0.020218802559629934 + 0.03955624804692069im; 0.07768328669860605 - 0.01309916574152996im 0.03992228249481433 - 0.09668694972708158im … -0.0013656801968612436 + 0.0787879469349359im -0.006622574226997871 + 0.02338685339554633im; … ; 0.04312454928248188 - 0.03310354550948466im -0.006966014654107195 - 0.009419681374635726im … -0.010315244125754524 + 0.060634600370084904im 0.04121190168201612 + 0.03866888225573169im; -0.015616152662243057 + 0.0140677764189007im 0.03422429989631994 + 0.03943675993070868im … -0.08956785141550322 + 0.042925294267220124im -0.02567637009333751 + 0.038147169939613604im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02662833100761879 + 0.018528092841645156im 0.013258808932723336 + 0.0020128522957229404im … -0.020371467851345013 + 0.009033751608675028im 0.005592553985768876 + 0.04265631858093828im; 0.004389295961951098 - 0.0055459501717538915im -0.00806110400584548 + 0.009727872156862319im … -0.012017009395715591 + 0.02448884358025428im 0.015952817948212114 + 0.02146319850216114im; … ; -0.0007181240357019938 + 0.013366503049305766im 0.002120673698501187 + 0.01731800403509919im … 0.05195008804985583 + 0.022456015372806573im 0.015464332530705201 - 0.0017999283377250165im; 0.009015403710088035 + 0.03703046766379564im 0.01654354410803442 + 0.018868162633487513im … 0.004021477724269179 - 0.015283466929987066im -0.018763729806503877 + 0.030231418183311525im;;; 0.03478284282595953 - 0.03428752368024045im 0.018878198345974352 + 0.00021099920260945863im … 0.04459071331661807 + 0.056362562980203375im 0.1510055121733922 - 0.011510039143434913im; -0.014810432251803785 - 0.016239088712644296im -0.01954063185069839 - 0.005004888511641818im … 0.11803221759294451 - 0.003927088038239122im 0.08018520845183542 - 0.11788784550186346im; … ; -0.008158292639135728 + 0.012356814540586163im -0.03440310910919836 + 0.02563850338243849im … 0.01779493316789161 - 0.03214602550863478im -0.015056798977382501 + 0.009560317411027601im; 0.020789916872773737 + 0.01586113423478767im -0.005985827463915398 + 0.05149159880168791im … -0.025383905537948073 - 0.012975005933456619im 0.03613254321455346 + 0.054466903174625186im;;; -0.011759099112948878 - 0.04064752235855003im -0.039792518066521496 - 0.032939122960128034im … 0.13046666919973332 - 0.017199398092930432im 0.08191052537071333 - 0.1295197501876114im; 0.03823700333450245 + 0.048127836677371805im -0.06262390643987154 + 0.027911365727538134im … 0.06751823711334014 - 0.10331650645162062im -0.028125244416313335 - 0.07643957729954079im; … ; -0.028524172517304353 + 0.015496260743622634im -0.022243329931928013 + 0.051126327068670444im … -0.013608950469091694 + 0.021060910979537016im 0.007349218226960642 + 0.023365760802471873im; 0.0066064970962579905 - 0.009027940974913932im 0.009178474820560018 + 0.006853313323021266im … 0.04285775100875906 + 0.05017665473286225im 0.07498868216283949 - 0.006812868746830223im;;; … ;;; 0.08364057907053415 - 0.18307825044681192im -0.03537783926539588 - 0.06541526268559765im … 0.004212320210728683 + 0.018029350155940226im 0.13891841348295975 - 0.041572585876885296im; -0.03290978605520158 - 0.06206771960809987im 0.042325332605220714 + 0.026125295997958053im … -0.010441896759140982 - 0.005622296878104692im 0.022022081014313293 - 0.07855082471157798im; … ; 0.05409784565594652 + 0.06415656603954742im 0.10068307724076209 - 0.021302472706515772im … -0.014455729487557648 - 0.012253838238749577im -0.043422757247619806 - 0.014876045800665066im; 0.18899604232366798 - 0.04570548145117677im 0.05789131080327424 - 0.12665263866064563im … -0.035721263175248215 + 0.008431911255583038im 0.04899745303661736 + 0.060503387262735284im;;; -0.03630381325417684 - 0.02767632316571751im 0.06561318039903749 + 0.05193870948358792im … -0.09451021003047061 + 0.02166467538633505im 0.0053747262103462645 - 0.05111913849651409im; 0.06627716829467212 + 0.055037849352836926im 0.1613381163236691 - 0.0497303922716741im … -0.0669685011115841 + 0.08177530700872333im -0.019150366930674918 + 0.027780998924168264im; … ; 0.13882593275628471 - 0.005616333429555614im 0.047971619505964985 - 0.08098379223420223im … -0.02857004838668747 + 0.07893247697253691im 0.029280548424086263 + 0.07984932206754194im; 0.06464255930188684 - 0.12574701363110435im -0.03002702246212034 - 0.043915149344486176im … -0.05165766923633529 + 0.006656084522608859im 0.07336939618381663 + 8.307393081221932e-5im;;; 0.026295397674180664 + 0.04366569635715849im 0.12537514942584058 - 0.025749128719728405im … -0.08022352884173929 + 0.104836760526868im -0.020218802559629934 + 0.03955624804692069im; 0.07768328669860605 - 0.01309916574152996im 0.03992228249481433 - 0.09668694972708158im … -0.0013656801968612436 + 0.0787879469349359im -0.006622574226997871 + 0.02338685339554633im; … ; 0.04312454928248188 - 0.03310354550948466im -0.006966014654107195 - 0.009419681374635726im … -0.010315244125754524 + 0.060634600370084904im 0.04121190168201612 + 0.03866888225573169im; -0.015616152662243057 + 0.0140677764189007im 0.03422429989631994 + 0.03943675993070868im … -0.08956785141550322 + 0.042925294267220124im -0.02567637009333751 + 0.038147169939613604im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722882 -11.100308396754542 … -8.289845772424137 -11.100308396754604; -11.100308396754542 -9.130057825959566 … -9.130057795908273 -11.100308356771565; … ; -8.289845772424139 -9.130057795908273 … -4.149589921652549 -6.287956198210011; -11.100308396754603 -11.100308356771567 … -6.287956198210012 -9.111848223589961;;; -11.100308396754546 -9.130057825959565 … -9.130057795908275 -11.100308356771569; -9.130057825959566 -6.903159481992778 … -9.130057827309248 -10.053883826564677; … ; -9.130057795908273 -9.130057827309248 … -5.294353669224392 -7.547399206532954; -11.100308356771565 -10.053883826564677 … -7.547399206532955 -10.053883826564782;;; -8.289845772424435 -6.307621931527206 … -8.289845781023391 -9.111848193538629; -6.3076219315272075 -4.516655665825535 … -7.547399237622786 -7.5473992065331865; … ; -8.28984578102339 -7.547399237622785 … -5.76896908359148 -7.547399237622857; -9.111848193538629 -7.5473992065331865 … -7.547399237622858 -9.111848224939866;;; … ;;; -5.301031718259853 -6.307621955799414 … -2.5497035732841598 -3.8495821793969953; -6.307621955799414 -6.903159495219606 … -3.3290606985550486 -4.878419358640448; … ; -2.5497035732841593 -3.329060698555049 … -1.2567984709087587 -1.8141947460483654; -3.8495821793969958 -4.87841935864045 … -1.8141947460483654 -2.7147673353308983;;; -8.289845772424139 -9.130057795908273 … -4.1495899216525505 -6.28795619821001; -9.130057795908275 -9.130057827309246 … -5.2943536692243915 -7.547399206532953; … ; -4.1495899216525505 -5.294353669224392 … -1.9094492399226097 -2.894612367860561; -6.287956198210011 -7.547399206532953 … -2.89461236786056 -4.485542759381535;;; -11.100308396754604 -11.100308356771567 … -6.287956198210012 -9.111848223589957; -11.100308356771565 -10.053883826564677 … -7.547399206532956 -10.053883826564782; … ; -6.2879561982100105 -7.547399206532956 … -2.8946123678605606 -4.485542759381534; -9.11184822358996 -10.053883826564782 … -4.485542759381535 -6.871104500146484]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02662833100761879 + 0.018528092841645156im 0.013258808932723336 + 0.0020128522957229404im … -0.020371467851345013 + 0.009033751608675028im 0.005592553985768876 + 0.04265631858093828im; 0.004389295961951098 - 0.0055459501717538915im -0.00806110400584548 + 0.009727872156862319im … -0.012017009395715591 + 0.02448884358025428im 0.015952817948212114 + 0.02146319850216114im; … ; -0.0007181240357019938 + 0.013366503049305766im 0.002120673698501187 + 0.01731800403509919im … 0.05195008804985583 + 0.022456015372806573im 0.015464332530705201 - 0.0017999283377250165im; 0.009015403710088035 + 0.03703046766379564im 0.01654354410803442 + 0.018868162633487513im … 0.004021477724269179 - 0.015283466929987066im -0.018763729806503877 + 0.030231418183311525im;;; 0.03478284282595953 - 0.03428752368024045im 0.018878198345974352 + 0.00021099920260945863im … 0.04459071331661807 + 0.056362562980203375im 0.1510055121733922 - 0.011510039143434913im; -0.014810432251803785 - 0.016239088712644296im -0.01954063185069839 - 0.005004888511641818im … 0.11803221759294451 - 0.003927088038239122im 0.08018520845183542 - 0.11788784550186346im; … ; -0.008158292639135728 + 0.012356814540586163im -0.03440310910919836 + 0.02563850338243849im … 0.01779493316789161 - 0.03214602550863478im -0.015056798977382501 + 0.009560317411027601im; 0.020789916872773737 + 0.01586113423478767im -0.005985827463915398 + 0.05149159880168791im … -0.025383905537948073 - 0.012975005933456619im 0.03613254321455346 + 0.054466903174625186im;;; -0.011759099112948878 - 0.04064752235855003im -0.039792518066521496 - 0.032939122960128034im … 0.13046666919973332 - 0.017199398092930432im 0.08191052537071333 - 0.1295197501876114im; 0.03823700333450245 + 0.048127836677371805im -0.06262390643987154 + 0.027911365727538134im … 0.06751823711334014 - 0.10331650645162062im -0.028125244416313335 - 0.07643957729954079im; … ; -0.028524172517304353 + 0.015496260743622634im -0.022243329931928013 + 0.051126327068670444im … -0.013608950469091694 + 0.021060910979537016im 0.007349218226960642 + 0.023365760802471873im; 0.0066064970962579905 - 0.009027940974913932im 0.009178474820560018 + 0.006853313323021266im … 0.04285775100875906 + 0.05017665473286225im 0.07498868216283949 - 0.006812868746830223im;;; … ;;; 0.08364057907053415 - 0.18307825044681192im -0.03537783926539588 - 0.06541526268559765im … 0.004212320210728683 + 0.018029350155940226im 0.13891841348295975 - 0.041572585876885296im; -0.03290978605520158 - 0.06206771960809987im 0.042325332605220714 + 0.026125295997958053im … -0.010441896759140982 - 0.005622296878104692im 0.022022081014313293 - 0.07855082471157798im; … ; 0.05409784565594652 + 0.06415656603954742im 0.10068307724076209 - 0.021302472706515772im … -0.014455729487557648 - 0.012253838238749577im -0.043422757247619806 - 0.014876045800665066im; 0.18899604232366798 - 0.04570548145117677im 0.05789131080327424 - 0.12665263866064563im … -0.035721263175248215 + 0.008431911255583038im 0.04899745303661736 + 0.060503387262735284im;;; -0.03630381325417684 - 0.02767632316571751im 0.06561318039903749 + 0.05193870948358792im … -0.09451021003047061 + 0.02166467538633505im 0.0053747262103462645 - 0.05111913849651409im; 0.06627716829467212 + 0.055037849352836926im 0.1613381163236691 - 0.0497303922716741im … -0.0669685011115841 + 0.08177530700872333im -0.019150366930674918 + 0.027780998924168264im; … ; 0.13882593275628471 - 0.005616333429555614im 0.047971619505964985 - 0.08098379223420223im … -0.02857004838668747 + 0.07893247697253691im 0.029280548424086263 + 0.07984932206754194im; 0.06464255930188684 - 0.12574701363110435im -0.03002702246212034 - 0.043915149344486176im … -0.05165766923633529 + 0.006656084522608859im 0.07336939618381663 + 8.307393081221932e-5im;;; 0.026295397674180664 + 0.04366569635715849im 0.12537514942584058 - 0.025749128719728405im … -0.08022352884173929 + 0.104836760526868im -0.020218802559629934 + 0.03955624804692069im; 0.07768328669860605 - 0.01309916574152996im 0.03992228249481433 - 0.09668694972708158im … -0.0013656801968612436 + 0.0787879469349359im -0.006622574226997871 + 0.02338685339554633im; … ; 0.04312454928248188 - 0.03310354550948466im -0.006966014654107195 - 0.009419681374635726im … -0.010315244125754524 + 0.060634600370084904im 0.04121190168201612 + 0.03866888225573169im; -0.015616152662243057 + 0.0140677764189007im 0.03422429989631994 + 0.03943675993070868im … -0.08956785141550322 + 0.042925294267220124im -0.02567637009333751 + 0.038147169939613604im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784536969376e-5 0.0011262712728276323 … 0.0066970375500021075 0.0011262712728276542; 0.0011262712728276425 0.005274334457306475 … 0.005274334457306513 0.0011262712728276475; … ; 0.006697037550002116 0.0052743344573065185 … 0.023244754190394713 0.012258986824996732; 0.0011262712728276492 0.0011262712728276458 … 0.012258986824996723 0.0037700086299049737;;; 0.0011262712728276492 0.005274334457306472 … 0.005274334457306514 0.0011262712728276512; 0.005274334457306482 0.014620065304367392 … 0.005274334457306507 0.002588080874854397; … ; 0.005274334457306523 0.005274334457306514 … 0.018107686645676968 0.008922003044605963; 0.0011262712728276455 0.00258808087485439 … 0.008922003044605954 0.0025880808748544068;;; 0.0066970375500020815 0.016412109101199022 … 0.006697037550002103 0.0037700086299049577; 0.016412109101199033 0.03127783931504802 … 0.008922003044605933 0.00892200304460591; … ; 0.006697037550002113 0.008922003044605933 … 0.016476756359043464 0.008922003044605963; 0.0037700086299049516 0.00892200304460591 … 0.008922003044605949 0.003770008629904972;;; … ;;; 0.01985383985289147 0.016412109101199047 … 0.03715667363457917 0.02719080068580741; 0.016412109101199054 0.01462006530436741 … 0.03230127212548162 0.022322100931109777; … ; 0.03715667363457918 0.03230127212548162 … 0.046296980700247056 0.042636582730244475; 0.0271908006858074 0.022322100931109784 … 0.04263658273024447 0.03477222914098101;;; 0.006697037550002094 0.005274334457306479 … 0.023244754190394692 0.012258986824996702; 0.0052743344573064925 0.005274334457306479 … 0.018107686645676933 0.008922003044605924; … ; 0.0232447541903947 0.018107686645676933 … 0.040371110334407746 0.03149160381044313; 0.012258986824996699 0.008922003044605924 … 0.031491603810443115 0.020047163432193975;;; 0.0011262712728276525 0.0011262712728276354 … 0.012258986824996718 0.0037700086299049663; 0.0011262712728276453 0.0025880808748543795 … 0.00892200304460594 0.002588080874854401; … ; 0.012258986824996727 0.008922003044605949 … 0.031491603810443136 0.020047163432193996; 0.0037700086299049616 0.0025880808748543946 … 0.020047163432193982 0.008952603496641471;;;;], eigenvalues = [[-0.17836835653415473, 0.26249194499984757, 0.2624919449998479, 0.26249194499984824, 0.35469214817241707, 0.35469214817241856, 0.3546921481724967], [-0.12755037617323745, 0.0647532059520921, 0.22545166518178555, 0.22545166518178597, 0.3219776496153847, 0.3892227690882161, 0.3892227690882173], [-0.10818729215906027, 0.07755003474268404, 0.17278328012060673, 0.17278328012060726, 0.2843518536189972, 0.33054764843090195, 0.5267232426517054], [-0.057773253736960684, 0.012724782212693455, 0.09766073750317755, 0.1841782533360677, 0.31522841795907314, 0.47203122045062096, 0.497913517838253]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930942273, n_iter = 9, ψ = Matrix{ComplexF64}[[-0.608570417644179 - 0.7289346568756065im -7.781872311390289e-13 - 8.069002837423258e-13im … 4.990283034502024e-12 + 3.4149440430738482e-12im 1.6131582292702754e-8 + 3.4526725590656605e-8im; -0.09895502006786071 - 0.008905121881427553im 0.10029477581258746 - 0.3649136414576111im … 0.1580138330025341 + 0.4246479207238585im -0.3046118639274528 - 0.17680639603037243im; … ; 0.007535550021185826 + 0.009025945739388752im -0.0023968898991482764 - 0.004443316441394801im … 0.007162150768515252 - 0.06237521302449235im 0.01779094783723555 + 0.07575366096902043im; -0.09895502006849698 - 0.008905121881782403im -0.1443801720026819 + 0.35172434270786634im … -0.16949366989445502 + 0.012172911419523553im 0.2502667790709508 + 0.1670113523101094im], [-0.8582520891604658 + 0.3347864214739227im 0.022634661062005467 + 0.20176521948603826im … 3.7139779508492186e-10 + 5.82778304491636e-10im 2.795248337533241e-10 + 5.656739940804752e-11im; -0.02513261164903749 + 0.05728011485950154im -0.007041068650260494 - 0.005620638282581504im … -6.711494173820172e-10 - 4.150638821819235e-10im -4.003499764285775e-10 + 1.0070246978959825e-10im; … ; 0.004604366336682145 - 0.001796068251365527im -0.009424693127916212 - 0.08401165240984146im … 0.032710442713927694 + 0.0378698512149255im -0.051711634709185786 + 0.07701080505610085im; -0.046974594911519715 + 0.10706050885538337im 0.07824681680211182 + 0.06246169095295271im … 0.22068592690484548 + 0.016132104792477068im 0.07910381699138032 + 0.4024810539832812im], [0.5421410009127595 + 0.7501298537588201im -2.7318160613102137e-13 + 1.391174862760233e-13im … 3.7368589262049574e-10 + 1.4099771345188235e-10im -5.206735699316218e-9 + 3.2811856884993414e-8im; 0.06766293711931637 + 0.010890237617096671im 0.013500971184007324 - 0.05042032942334683im … 0.017433573424702423 - 0.019236209513404087im -0.002433787810864628 - 0.0011039710400734992im; … ; -0.006206063350795732 - 0.0085869790071246im -2.953979283038272e-12 + 3.121992482249113e-12im … -3.6939711657169244e-10 - 4.3982242787847705e-10im 0.038134357176750004 + 0.038661388033995644im; 0.15820516262767478 + 0.025462858788591208im -0.07584868142454877 + 0.2832622521642525im … 0.24987475418459723 - 0.27571186082996907im 0.15566521369244557 + 0.000701954764294469im], [-0.7789809143067263 - 0.17918734326220964im -2.438339493341453e-13 + 2.982548512033775e-13im … 0.1654551856811305 - 0.0750127535349541im 2.6099874508112263e-6 - 4.608405846473804e-6im; -0.33214831812522544 + 0.20791799798246358im 0.0714179465250865 - 0.6166495711432911im … -0.06407349542856713 + 0.1703540493707725im 1.1664525695974407e-6 + 2.032877427056037e-6im; … ; 0.012913914470369285 + 0.002970560616537278im -0.00019898012082575353 + 0.00015767384990282094im … -0.01188294430229411 + 0.0053867292638001526im 0.007333150008483549 - 0.04551367765973608im; -0.05686837512285749 + 0.035598430154630864im -0.0006112819159060528 + 0.005278039342071404im … -0.050499382480415377 + 0.13426079077612663im -0.2759717564668485 - 0.38197255590946855im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653415473, 0.26249194499984757, 0.2624919449998479, 0.26249194499984824, 0.35469214817241707, 0.35469214817241856, 0.3546921481724967], [-0.12755037617323745, 0.0647532059520921, 0.22545166518178555, 0.22545166518178597, 0.3219776496153847, 0.3892227690882161, 0.3892227690882173], [-0.10818729215906027, 0.07755003474268404, 0.17278328012060673, 0.17278328012060726, 0.2843518536189972, 0.33054764843090195, 0.5267232426517054], [-0.057773253736960684, 0.012724782212693455, 0.09766073750317755, 0.1841782533360677, 0.31522841795907314, 0.47203122045062096, 0.497913517838253]], X = [[-0.608570417644179 - 0.7289346568756065im -7.781872311390289e-13 - 8.069002837423258e-13im … 4.990283034502024e-12 + 3.4149440430738482e-12im 1.6131582292702754e-8 + 3.4526725590656605e-8im; -0.09895502006786071 - 0.008905121881427553im 0.10029477581258746 - 0.3649136414576111im … 0.1580138330025341 + 0.4246479207238585im -0.3046118639274528 - 0.17680639603037243im; … ; 0.007535550021185826 + 0.009025945739388752im -0.0023968898991482764 - 0.004443316441394801im … 0.007162150768515252 - 0.06237521302449235im 0.01779094783723555 + 0.07575366096902043im; -0.09895502006849698 - 0.008905121881782403im -0.1443801720026819 + 0.35172434270786634im … -0.16949366989445502 + 0.012172911419523553im 0.2502667790709508 + 0.1670113523101094im], [-0.8582520891604658 + 0.3347864214739227im 0.022634661062005467 + 0.20176521948603826im … 3.7139779508492186e-10 + 5.82778304491636e-10im 2.795248337533241e-10 + 5.656739940804752e-11im; -0.02513261164903749 + 0.05728011485950154im -0.007041068650260494 - 0.005620638282581504im … -6.711494173820172e-10 - 4.150638821819235e-10im -4.003499764285775e-10 + 1.0070246978959825e-10im; … ; 0.004604366336682145 - 0.001796068251365527im -0.009424693127916212 - 0.08401165240984146im … 0.032710442713927694 + 0.0378698512149255im -0.051711634709185786 + 0.07701080505610085im; -0.046974594911519715 + 0.10706050885538337im 0.07824681680211182 + 0.06246169095295271im … 0.22068592690484548 + 0.016132104792477068im 0.07910381699138032 + 0.4024810539832812im], [0.5421410009127595 + 0.7501298537588201im -2.7318160613102137e-13 + 1.391174862760233e-13im … 3.7368589262049574e-10 + 1.4099771345188235e-10im -5.206735699316218e-9 + 3.2811856884993414e-8im; 0.06766293711931637 + 0.010890237617096671im 0.013500971184007324 - 0.05042032942334683im … 0.017433573424702423 - 0.019236209513404087im -0.002433787810864628 - 0.0011039710400734992im; … ; -0.006206063350795732 - 0.0085869790071246im -2.953979283038272e-12 + 3.121992482249113e-12im … -3.6939711657169244e-10 - 4.3982242787847705e-10im 0.038134357176750004 + 0.038661388033995644im; 0.15820516262767478 + 0.025462858788591208im -0.07584868142454877 + 0.2832622521642525im … 0.24987475418459723 - 0.27571186082996907im 0.15566521369244557 + 0.000701954764294469im], [-0.7789809143067263 - 0.17918734326220964im -2.438339493341453e-13 + 2.982548512033775e-13im … 0.1654551856811305 - 0.0750127535349541im 2.6099874508112263e-6 - 4.608405846473804e-6im; -0.33214831812522544 + 0.20791799798246358im 0.0714179465250865 - 0.6166495711432911im … -0.06407349542856713 + 0.1703540493707725im 1.1664525695974407e-6 + 2.032877427056037e-6im; … ; 0.012913914470369285 + 0.002970560616537278im -0.00019898012082575353 + 0.00015767384990282094im … -0.01188294430229411 + 0.0053867292638001526im 0.007333150008483549 - 0.04551367765973608im; -0.05686837512285749 + 0.035598430154630864im -0.0006112819159060528 + 0.005278039342071404im … -0.050499382480415377 + 0.13426079077612663im -0.2759717564668485 - 0.38197255590946855im]], residual_norms = [[0.0, 2.05785456204121e-11, 5.349145395308053e-11, 3.340997307814781e-11, 7.698244031490866e-10, 8.67900024781884e-11, 4.791322424888519e-7], [0.0, 0.0, 5.490553675753277e-11, 5.226139736797292e-11, 3.4492780022364843e-9, 6.108214069545489e-8, 6.63103561319057e-8], [6.457890597900594e-11, 4.73811166085524e-11, 8.216374404770842e-11, 4.2615473176998286e-11, 7.804540175393496e-10, 1.5041862949414186e-8, 2.269303918873198e-6], [0.0, 0.0, 0.0, 4.13269979906146e-11, 2.4123359070375107e-9, 3.4048711920503875e-5, 1.5903518800923e-5]], n_iter = [5, 3, 2, 3], converged = 1, n_matvec = 111)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2107026322829453, 0.027611624302384192, 0.0023104731103227687, 0.0002562504831148379, 9.499297764272935e-6, 9.291961344599614e-7, 4.018461771357338e-8, 3.5223054448639216e-9, 7.752013906525465e-11], history_Etot = [-7.905262184746561, -7.910544349236436, -7.910593455333043, -7.910594393325345, -7.910594396441362, -7.910594396488419, -7.910594396488506, -7.910594396488508, -7.910594396488506], occupation_threshold = 1.0e-6, runtime_ns = 0x000000007b91cdcc)