Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#788"{DFTK.var"#anderson#787#789"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.07549896911882323 - 0.00789557238724185im -0.011759400157148485 - 0.029924517741653278im … -0.025434421749032033 + 0.027503011615303177im 0.032425969725171234 + 0.0838124537348888im; 0.007191647431983095 - 0.026265654273622006im -0.03270308621198578 + 0.01755697738555943im … 0.033244282535767423 + 0.07763468649705701im 0.05522870915684691 + 0.019680765824999676im; … ; -0.04583651569913279 + 0.05220796188109228im -0.000982732582527192 + 0.04950804606676311im … 0.06868591932806653 - 0.03746703991482837im -0.031688854879285744 - 0.04720660021868149im; 0.035237128060885706 + 0.0716685839330678im 0.019571688445888025 + 0.0030804648233884605im … -0.004468470956787884 - 0.0662212759717628im -0.04995544639120772 + 0.04759027147479607im;;; -0.011841593943229995 - 0.03194022183821308im -0.022901031883003967 + 0.10496206027341068im … 0.03896444656240454 + 0.08968377574343196im 0.11490300068216781 - 0.008064609925481137im; -0.06005752731673682 - 0.011169030437329077im 0.05627609255940199 + 0.08924568998206406im … 0.1087051780989772 + 0.04548211032991316im 0.045135067042558284 - 0.0720108273718066im; … ; 0.06342573212326845 + 0.07886931738565575im 0.016426218293450767 + 0.005542322389137794im … -0.029076591270093956 - 0.006430298201519153im -0.02203186563235487 + 0.08807110618985842im; 0.07200135613034007 - 0.02475601542412746im -0.05301554009575072 + 0.035803815363530694im … -0.026270002687320763 + 0.05183537488196088im 0.0789186602738135 + 0.08461173552924586im;;; -0.013566047928753253 + 0.09819559690467906im 0.11757589462925783 + 0.08393353887394588im … 0.03981332958730237 + 0.036414361504237214im -0.00980645886431495 - 0.001615955475995582im; 0.044642805614638306 + 0.09865975235306214im 0.09958737273437303 - 0.029345369406008102im … 0.05525470944474625 - 0.023756766453945408im -0.053997132849049896 + 0.0025372172218335737im; … ; 0.0078815157065963 - 0.005231801514635704im -0.051228315972469046 + 0.05196814013908704im … -0.004414457921653792 + 0.03992295530222691im 0.039138314701023164 + 0.03970239079608545im; -0.05450394950751842 + 0.05064765849288076im 0.011827989818714937 + 0.15660756152314084im … 0.011040789033661774 + 0.035828336723477135im 0.009893377172049111 - 0.005727029767608976im;;; … ;;; -0.05312417837114902 + 0.04182861878740403im -0.014980234592963501 - 0.05363075616610141im … 0.02296103537900058 + 0.03654692564389404im -0.13761638642561946 + 0.01170776315295504im; -0.015565392752014122 + 0.04035840015748683im -0.06019869631464903 - 0.038991588684624864im … -0.08602494884409731 + 0.020964017616731966im -0.11636322161617707 + 0.12474102266421848im; … ; -0.0983157778938286 - 0.053964351559997216im -0.03629104166857754 + 0.01825275539771562im … -0.015847413367414066 - 0.05287242834486608im -0.04555401035531601 - 0.09736504292279471im; -0.08349291102813727 + 0.004439820882207263im 0.0068474200845151795 - 0.011937973461129046im … -0.016803697078958506 + 0.08712279908753393im -0.07060984691294898 - 0.042875983168610465im;;; -0.040988790685130894 - 0.02248730081916904im -0.09710754309891217 - 0.045458518289262465im … -0.027436809308501967 - 5.7440731857438115e-5im -0.07461924528436054 + 0.044704733679239744im; -0.044020908709016066 + 0.009332486961337053im -0.07084130910707702 + 0.022132746667188282im … -0.11276532296205416 + 0.1265365665256561im -0.022930274694878842 + 0.16141421061009176im; … ; -0.009625814955392714 + 0.006160756335345188im 0.025628940382234875 - 0.03813221738969731im … -0.047989257748514896 - 0.0024698782483549217im -0.04995452341483694 - 0.008647343460152928im; 0.011292655600589445 - 0.061655029449218274im -0.04137876764347238 - 0.10499881562344829im … 0.031279737512374325 + 0.04303528964891303im -0.006709270442429511 - 0.017613022670249542im;;; -0.015775715812394547 + 0.04023686557818296im 0.023591290207903067 + 0.00932131724808477im … -0.04048257263615575 + 0.029412042869968305im -0.029988460090880895 + 0.12012696639769449im; 0.014500266017213322 + 0.015809126886337146im 0.014288604027139794 - 0.028968764359972095im … -0.0006289735984580172 + 0.15082762772265296im 0.0375501352772478 + 0.07838507426781958im; … ; -0.002699341947287919 - 0.05449283128339954im -0.04528642518168406 - 0.03823866190322223im … 0.015027579553592938 + 0.04461472431852864im 0.03664883736653701 - 0.02184887140199831im; -0.05716500686841004 - 0.01721506809102291im -0.06166837821398114 + 0.005704537348585486im … 0.03885272958894543 - 0.022377546649223427im -0.023090271895172147 - 0.04698349277161995im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.07549896911882323 - 0.00789557238724185im -0.011759400157148485 - 0.029924517741653278im … -0.025434421749032033 + 0.027503011615303177im 0.032425969725171234 + 0.0838124537348888im; 0.007191647431983095 - 0.026265654273622006im -0.03270308621198578 + 0.01755697738555943im … 0.033244282535767423 + 0.07763468649705701im 0.05522870915684691 + 0.019680765824999676im; … ; -0.04583651569913279 + 0.05220796188109228im -0.000982732582527192 + 0.04950804606676311im … 0.06868591932806653 - 0.03746703991482837im -0.031688854879285744 - 0.04720660021868149im; 0.035237128060885706 + 0.0716685839330678im 0.019571688445888025 + 0.0030804648233884605im … -0.004468470956787884 - 0.0662212759717628im -0.04995544639120772 + 0.04759027147479607im;;; -0.011841593943229995 - 0.03194022183821308im -0.022901031883003967 + 0.10496206027341068im … 0.03896444656240454 + 0.08968377574343196im 0.11490300068216781 - 0.008064609925481137im; -0.06005752731673682 - 0.011169030437329077im 0.05627609255940199 + 0.08924568998206406im … 0.1087051780989772 + 0.04548211032991316im 0.045135067042558284 - 0.0720108273718066im; … ; 0.06342573212326845 + 0.07886931738565575im 0.016426218293450767 + 0.005542322389137794im … -0.029076591270093956 - 0.006430298201519153im -0.02203186563235487 + 0.08807110618985842im; 0.07200135613034007 - 0.02475601542412746im -0.05301554009575072 + 0.035803815363530694im … -0.026270002687320763 + 0.05183537488196088im 0.0789186602738135 + 0.08461173552924586im;;; -0.013566047928753253 + 0.09819559690467906im 0.11757589462925783 + 0.08393353887394588im … 0.03981332958730237 + 0.036414361504237214im -0.00980645886431495 - 0.001615955475995582im; 0.044642805614638306 + 0.09865975235306214im 0.09958737273437303 - 0.029345369406008102im … 0.05525470944474625 - 0.023756766453945408im -0.053997132849049896 + 0.0025372172218335737im; … ; 0.0078815157065963 - 0.005231801514635704im -0.051228315972469046 + 0.05196814013908704im … -0.004414457921653792 + 0.03992295530222691im 0.039138314701023164 + 0.03970239079608545im; -0.05450394950751842 + 0.05064765849288076im 0.011827989818714937 + 0.15660756152314084im … 0.011040789033661774 + 0.035828336723477135im 0.009893377172049111 - 0.005727029767608976im;;; … ;;; -0.05312417837114902 + 0.04182861878740403im -0.014980234592963501 - 0.05363075616610141im … 0.02296103537900058 + 0.03654692564389404im -0.13761638642561946 + 0.01170776315295504im; -0.015565392752014122 + 0.04035840015748683im -0.06019869631464903 - 0.038991588684624864im … -0.08602494884409731 + 0.020964017616731966im -0.11636322161617707 + 0.12474102266421848im; … ; -0.0983157778938286 - 0.053964351559997216im -0.03629104166857754 + 0.01825275539771562im … -0.015847413367414066 - 0.05287242834486608im -0.04555401035531601 - 0.09736504292279471im; -0.08349291102813727 + 0.004439820882207263im 0.0068474200845151795 - 0.011937973461129046im … -0.016803697078958506 + 0.08712279908753393im -0.07060984691294898 - 0.042875983168610465im;;; -0.040988790685130894 - 0.02248730081916904im -0.09710754309891217 - 0.045458518289262465im … -0.027436809308501967 - 5.7440731857438115e-5im -0.07461924528436054 + 0.044704733679239744im; -0.044020908709016066 + 0.009332486961337053im -0.07084130910707702 + 0.022132746667188282im … -0.11276532296205416 + 0.1265365665256561im -0.022930274694878842 + 0.16141421061009176im; … ; -0.009625814955392714 + 0.006160756335345188im 0.025628940382234875 - 0.03813221738969731im … -0.047989257748514896 - 0.0024698782483549217im -0.04995452341483694 - 0.008647343460152928im; 0.011292655600589445 - 0.061655029449218274im -0.04137876764347238 - 0.10499881562344829im … 0.031279737512374325 + 0.04303528964891303im -0.006709270442429511 - 0.017613022670249542im;;; -0.015775715812394547 + 0.04023686557818296im 0.023591290207903067 + 0.00932131724808477im … -0.04048257263615575 + 0.029412042869968305im -0.029988460090880895 + 0.12012696639769449im; 0.014500266017213322 + 0.015809126886337146im 0.014288604027139794 - 0.028968764359972095im … -0.0006289735984580172 + 0.15082762772265296im 0.0375501352772478 + 0.07838507426781958im; … ; -0.002699341947287919 - 0.05449283128339954im -0.04528642518168406 - 0.03823866190322223im … 0.015027579553592938 + 0.04461472431852864im 0.03664883736653701 - 0.02184887140199831im; -0.05716500686841004 - 0.01721506809102291im -0.06166837821398114 + 0.005704537348585486im … 0.03885272958894543 - 0.022377546649223427im -0.023090271895172147 - 0.04698349277161995im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.07549896911882323 - 0.00789557238724185im -0.011759400157148485 - 0.029924517741653278im … -0.025434421749032033 + 0.027503011615303177im 0.032425969725171234 + 0.0838124537348888im; 0.007191647431983095 - 0.026265654273622006im -0.03270308621198578 + 0.01755697738555943im … 0.033244282535767423 + 0.07763468649705701im 0.05522870915684691 + 0.019680765824999676im; … ; -0.04583651569913279 + 0.05220796188109228im -0.000982732582527192 + 0.04950804606676311im … 0.06868591932806653 - 0.03746703991482837im -0.031688854879285744 - 0.04720660021868149im; 0.035237128060885706 + 0.0716685839330678im 0.019571688445888025 + 0.0030804648233884605im … -0.004468470956787884 - 0.0662212759717628im -0.04995544639120772 + 0.04759027147479607im;;; -0.011841593943229995 - 0.03194022183821308im -0.022901031883003967 + 0.10496206027341068im … 0.03896444656240454 + 0.08968377574343196im 0.11490300068216781 - 0.008064609925481137im; -0.06005752731673682 - 0.011169030437329077im 0.05627609255940199 + 0.08924568998206406im … 0.1087051780989772 + 0.04548211032991316im 0.045135067042558284 - 0.0720108273718066im; … ; 0.06342573212326845 + 0.07886931738565575im 0.016426218293450767 + 0.005542322389137794im … -0.029076591270093956 - 0.006430298201519153im -0.02203186563235487 + 0.08807110618985842im; 0.07200135613034007 - 0.02475601542412746im -0.05301554009575072 + 0.035803815363530694im … -0.026270002687320763 + 0.05183537488196088im 0.0789186602738135 + 0.08461173552924586im;;; -0.013566047928753253 + 0.09819559690467906im 0.11757589462925783 + 0.08393353887394588im … 0.03981332958730237 + 0.036414361504237214im -0.00980645886431495 - 0.001615955475995582im; 0.044642805614638306 + 0.09865975235306214im 0.09958737273437303 - 0.029345369406008102im … 0.05525470944474625 - 0.023756766453945408im -0.053997132849049896 + 0.0025372172218335737im; … ; 0.0078815157065963 - 0.005231801514635704im -0.051228315972469046 + 0.05196814013908704im … -0.004414457921653792 + 0.03992295530222691im 0.039138314701023164 + 0.03970239079608545im; -0.05450394950751842 + 0.05064765849288076im 0.011827989818714937 + 0.15660756152314084im … 0.011040789033661774 + 0.035828336723477135im 0.009893377172049111 - 0.005727029767608976im;;; … ;;; -0.05312417837114902 + 0.04182861878740403im -0.014980234592963501 - 0.05363075616610141im … 0.02296103537900058 + 0.03654692564389404im -0.13761638642561946 + 0.01170776315295504im; -0.015565392752014122 + 0.04035840015748683im -0.06019869631464903 - 0.038991588684624864im … -0.08602494884409731 + 0.020964017616731966im -0.11636322161617707 + 0.12474102266421848im; … ; -0.0983157778938286 - 0.053964351559997216im -0.03629104166857754 + 0.01825275539771562im … -0.015847413367414066 - 0.05287242834486608im -0.04555401035531601 - 0.09736504292279471im; -0.08349291102813727 + 0.004439820882207263im 0.0068474200845151795 - 0.011937973461129046im … -0.016803697078958506 + 0.08712279908753393im -0.07060984691294898 - 0.042875983168610465im;;; -0.040988790685130894 - 0.02248730081916904im -0.09710754309891217 - 0.045458518289262465im … -0.027436809308501967 - 5.7440731857438115e-5im -0.07461924528436054 + 0.044704733679239744im; -0.044020908709016066 + 0.009332486961337053im -0.07084130910707702 + 0.022132746667188282im … -0.11276532296205416 + 0.1265365665256561im -0.022930274694878842 + 0.16141421061009176im; … ; -0.009625814955392714 + 0.006160756335345188im 0.025628940382234875 - 0.03813221738969731im … -0.047989257748514896 - 0.0024698782483549217im -0.04995452341483694 - 0.008647343460152928im; 0.011292655600589445 - 0.061655029449218274im -0.04137876764347238 - 0.10499881562344829im … 0.031279737512374325 + 0.04303528964891303im -0.006709270442429511 - 0.017613022670249542im;;; -0.015775715812394547 + 0.04023686557818296im 0.023591290207903067 + 0.00932131724808477im … -0.04048257263615575 + 0.029412042869968305im -0.029988460090880895 + 0.12012696639769449im; 0.014500266017213322 + 0.015809126886337146im 0.014288604027139794 - 0.028968764359972095im … -0.0006289735984580172 + 0.15082762772265296im 0.0375501352772478 + 0.07838507426781958im; … ; -0.002699341947287919 - 0.05449283128339954im -0.04528642518168406 - 0.03823866190322223im … 0.015027579553592938 + 0.04461472431852864im 0.03664883736653701 - 0.02184887140199831im; -0.05716500686841004 - 0.01721506809102291im -0.06166837821398114 + 0.005704537348585486im … 0.03885272958894543 - 0.022377546649223427im -0.023090271895172147 - 0.04698349277161995im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872535 -11.100308396741804 … -8.289845772411875 -11.100308396741864; -11.100308396741804 -9.130057825947228 … -9.130057795895935 -11.100308356758827; … ; -8.289845772411875 -9.130057795895935 … -4.1495899216429715 -6.2879561981988115; -11.100308396741863 -11.100308356758829 … -6.287956198198812 -9.11184822357673;;; -11.100308396741806 -9.130057825947226 … -9.130057795895937 -11.100308356758829; -9.130057825947228 -6.903159481981746 … -9.130057827296909 -10.053883826551496; … ; -9.130057795895935 -9.130057827296909 … -5.294353669214006 -7.547399206521098; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551603;;; -8.289845772412173 -6.307621931516356 … -8.289845781011127 -9.1118481935254; -6.3076219315163575 -4.516655665815533 … -7.54739923761093 -7.54739920652133; … ; -8.289845781011126 -7.547399237610929 … -5.768969083580815 -7.5473992376110015; -9.111848193525399 -7.547399206521329 … -7.547399237611002 -9.111848224926637;;; … ;;; -5.301031718249454 -6.307621955788563 … -2.5497035732758593 -3.8495821793875704; -6.307621955788564 -6.903159495208574 … -3.3290606985460647 -4.87841935863034; … ; -2.549703573275858 -3.3290606985460656 … -1.2567984709024176 -1.8141947460409578; -3.8495821793875686 -4.8784193586303415 … -1.8141947460409573 -2.714767335322448;;; -8.289845772411876 -9.130057795895935 … -4.149589921642972 -6.28795619819881; -9.130057795895937 -9.130057827296907 … -5.294353669214005 -7.547399206521097; … ; -4.149589921642972 -5.294353669214006 … -1.9094492399151914 -2.8946123678520648; -6.287956198198811 -7.5473992065210975 … -2.8946123678520643 -4.4855427593716755;;; -11.100308396741864 -11.100308356758829 … -6.2879561981988115 -9.111848223576729; -11.100308356758827 -10.053883826551496 … -7.547399206521099 -10.053883826551601; … ; -6.28795619819881 -7.547399206521099 … -2.8946123678520643 -4.4855427593716755; -9.11184822357673 -10.053883826551601 … -4.485542759371676 -6.871104500134665]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.07549896911882323 - 0.00789557238724185im -0.011759400157148485 - 0.029924517741653278im … -0.025434421749032033 + 0.027503011615303177im 0.032425969725171234 + 0.0838124537348888im; 0.007191647431983095 - 0.026265654273622006im -0.03270308621198578 + 0.01755697738555943im … 0.033244282535767423 + 0.07763468649705701im 0.05522870915684691 + 0.019680765824999676im; … ; -0.04583651569913279 + 0.05220796188109228im -0.000982732582527192 + 0.04950804606676311im … 0.06868591932806653 - 0.03746703991482837im -0.031688854879285744 - 0.04720660021868149im; 0.035237128060885706 + 0.0716685839330678im 0.019571688445888025 + 0.0030804648233884605im … -0.004468470956787884 - 0.0662212759717628im -0.04995544639120772 + 0.04759027147479607im;;; -0.011841593943229995 - 0.03194022183821308im -0.022901031883003967 + 0.10496206027341068im … 0.03896444656240454 + 0.08968377574343196im 0.11490300068216781 - 0.008064609925481137im; -0.06005752731673682 - 0.011169030437329077im 0.05627609255940199 + 0.08924568998206406im … 0.1087051780989772 + 0.04548211032991316im 0.045135067042558284 - 0.0720108273718066im; … ; 0.06342573212326845 + 0.07886931738565575im 0.016426218293450767 + 0.005542322389137794im … -0.029076591270093956 - 0.006430298201519153im -0.02203186563235487 + 0.08807110618985842im; 0.07200135613034007 - 0.02475601542412746im -0.05301554009575072 + 0.035803815363530694im … -0.026270002687320763 + 0.05183537488196088im 0.0789186602738135 + 0.08461173552924586im;;; -0.013566047928753253 + 0.09819559690467906im 0.11757589462925783 + 0.08393353887394588im … 0.03981332958730237 + 0.036414361504237214im -0.00980645886431495 - 0.001615955475995582im; 0.044642805614638306 + 0.09865975235306214im 0.09958737273437303 - 0.029345369406008102im … 0.05525470944474625 - 0.023756766453945408im -0.053997132849049896 + 0.0025372172218335737im; … ; 0.0078815157065963 - 0.005231801514635704im -0.051228315972469046 + 0.05196814013908704im … -0.004414457921653792 + 0.03992295530222691im 0.039138314701023164 + 0.03970239079608545im; -0.05450394950751842 + 0.05064765849288076im 0.011827989818714937 + 0.15660756152314084im … 0.011040789033661774 + 0.035828336723477135im 0.009893377172049111 - 0.005727029767608976im;;; … ;;; -0.05312417837114902 + 0.04182861878740403im -0.014980234592963501 - 0.05363075616610141im … 0.02296103537900058 + 0.03654692564389404im -0.13761638642561946 + 0.01170776315295504im; -0.015565392752014122 + 0.04035840015748683im -0.06019869631464903 - 0.038991588684624864im … -0.08602494884409731 + 0.020964017616731966im -0.11636322161617707 + 0.12474102266421848im; … ; -0.0983157778938286 - 0.053964351559997216im -0.03629104166857754 + 0.01825275539771562im … -0.015847413367414066 - 0.05287242834486608im -0.04555401035531601 - 0.09736504292279471im; -0.08349291102813727 + 0.004439820882207263im 0.0068474200845151795 - 0.011937973461129046im … -0.016803697078958506 + 0.08712279908753393im -0.07060984691294898 - 0.042875983168610465im;;; -0.040988790685130894 - 0.02248730081916904im -0.09710754309891217 - 0.045458518289262465im … -0.027436809308501967 - 5.7440731857438115e-5im -0.07461924528436054 + 0.044704733679239744im; -0.044020908709016066 + 0.009332486961337053im -0.07084130910707702 + 0.022132746667188282im … -0.11276532296205416 + 0.1265365665256561im -0.022930274694878842 + 0.16141421061009176im; … ; -0.009625814955392714 + 0.006160756335345188im 0.025628940382234875 - 0.03813221738969731im … -0.047989257748514896 - 0.0024698782483549217im -0.04995452341483694 - 0.008647343460152928im; 0.011292655600589445 - 0.061655029449218274im -0.04137876764347238 - 0.10499881562344829im … 0.031279737512374325 + 0.04303528964891303im -0.006709270442429511 - 0.017613022670249542im;;; -0.015775715812394547 + 0.04023686557818296im 0.023591290207903067 + 0.00932131724808477im … -0.04048257263615575 + 0.029412042869968305im -0.029988460090880895 + 0.12012696639769449im; 0.014500266017213322 + 0.015809126886337146im 0.014288604027139794 - 0.028968764359972095im … -0.0006289735984580172 + 0.15082762772265296im 0.0375501352772478 + 0.07838507426781958im; … ; -0.002699341947287919 - 0.05449283128339954im -0.04528642518168406 - 0.03823866190322223im … 0.015027579553592938 + 0.04461472431852864im 0.03664883736653701 - 0.02184887140199831im; -0.05716500686841004 - 0.01721506809102291im -0.06166837821398114 + 0.005704537348585486im … 0.03885272958894543 - 0.022377546649223427im -0.023090271895172147 - 0.04698349277161995im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.589784543468951e-5 0.0011262712728285222 … 0.006697037550051989 0.0011262712728285374; 0.001126271272828529 0.005274334457346873 … 0.005274334457346904 0.0011262712728285324; … ; 0.006697037550051976 0.005274334457346897 … 0.023244754191024043 0.012258986825206975; 0.0011262712728285359 0.001126271272828529 … 0.01225898682520697 0.00377000862987122;;; 0.0011262712728285311 0.005274334457346866 … 0.005274334457346905 0.0011262712728285417; 0.005274334457346877 0.014620065304693832 … 0.0052743344573468985 0.0025880808748334596; … ; 0.005274334457346896 0.0052743344573468985 … 0.018107686646109823 0.008922003044714036; 0.0011262712728285413 0.0025880808748334583 … 0.008922003044714032 0.0025880808748334747;;; 0.00669703755005195 0.01641210910157278 … 0.00669703755005198 0.003770008629871199; 0.01641210910157279 0.03127783931592906 … 0.008922003044714008 0.008922003044713994; … ; 0.006697037550051974 0.008922003044714005 … 0.016476756359416596 0.008922003044714034; 0.003770008629871199 0.00892200304471399 … 0.008922003044714032 0.0037700086298712143;;; … ;;; 0.019853839853374154 0.016412109101572793 … 0.03715667363565947 0.027190800686559057; 0.016412109101572793 0.01462006530469385 … 0.03230127212642981 0.022322100931688956; … ; 0.03715667363565947 0.03230127212642982 … 0.04629698070143774 0.04263658273143236; 0.027190800686559057 0.02232210093168895 … 0.04263658273143235 0.03477222914198422;;; 0.00669703755005196 0.005274334457346873 … 0.02324475419102402 0.012258986825206942; 0.005274334457346879 0.005274334457346875 … 0.01810768664610978 0.008922003044714003; … ; 0.023244754191024005 0.01810768664610978 … 0.040371110335564675 0.03149160381136689; 0.012258986825206942 0.008922003044714001 … 0.03149160381136688 0.020047163432704282;;; 0.0011262712728285337 0.0011262712728285253 … 0.012258986825206963 0.0037700086298712117; 0.0011262712728285355 0.0025880808748334544 … 0.008922003044714015 0.0025880808748334626; … ; 0.012258986825206953 0.008922003044714018 … 0.031491603811366904 0.020047163432704292; 0.003770008629871212 0.002588080874833461 … 0.020047163432704285 0.008952603496732275;;;;], eigenvalues = [[-0.17836835654005462, 0.26249194499057155, 0.2624919449905719, 0.2624919449905721, 0.354692148167274, 0.3546921481672742, 0.3546921481673414], [-0.12755037617992662, 0.06475320594611786, 0.22545166517335352, 0.22545166517335374, 0.3219776496107677, 0.3892227690844154, 0.3892227690844164], [-0.10818729216582024, 0.07755003473357376, 0.17278328011399197, 0.17278328011399208, 0.28435185361935245, 0.3305476484326576, 0.5267232426396122], [-0.057773253745124147, 0.01272478220475428, 0.09766073750067888, 0.18417825332898852, 0.3152284179594499, 0.4720312189819647, 0.49791351772856424]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993049623, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.3701061259340681 - 0.8744856446922376im 1.1329765057673511e-13 - 1.0838496362868767e-13im … -1.0635423596407137e-11 + 2.6902061728050454e-11im -2.5234251626971716e-8 + 6.391570248118633e-8im; -0.09208084962436516 - 0.037316408252552134im 0.24888759630018265 + 0.15598017416542082im … 0.28186660684936915 + 0.136021105553371im 0.06030871801359853 + 0.2534501151618544im; … ; 0.004582794602174774 + 0.01082821334579208im 0.0043102267415996934 - 0.011787701988380563im … 0.022020065820314894 - 0.0367951892682719im -0.00029844886575171753 - 0.08364760738234907im; -0.09208084962435165 - 0.03731640825246342im -0.297080215412956 - 0.25973195162753726im … 0.19422495860404873 - 0.21285353629592377im -0.43763422723190687 - 0.24095227827371327im], [-0.8613229372834532 + 0.32680482592929677im 0.10696541359488648 + 0.17256862974251128im … 1.7709587257054608e-10 - 1.2869407076033215e-10im 6.680833668759752e-11 - 1.8833210221407584e-10im; -0.025663261111252857 + 0.057044340263040345im -0.008771031353208539 - 0.0020584536281443447im … 2.1914110778372662e-10 + 2.5489312949380147e-10im -1.396876597687604e-11 + 1.4138696227618964e-10im; … ; 0.004620840877552781 - 0.0017532484429551294im -0.04453860367976108 - 0.07185468226923344im … 0.06612253589225299 + 0.03011203609583685im 0.07578575969086648 + 0.009297751010015025im; -0.04796641557358912 + 0.1066198297760418im 0.09747175010469043 + 0.02287542588394084im … 0.3009001002409251 - 0.11259532431875527im 0.26603367503342806 - 0.20789044910971552im], [0.6805011731497063 + 0.6273195483239468im -4.28667516317168e-14 + 3.5621435827587644e-14im … 1.0967603948880881e-10 + 6.336140115216184e-11im -6.949545312363227e-9 + 6.928728060681872e-9im; 0.06847712375535965 - 0.0027845748617546643im 5.96272429198133e-5 + 0.052196573503584635im … 0.012880926617189654 - 0.022539818386986602im -0.0017850583353106891 + 0.0036985705741510743im; … ; -0.007789916980102361 - 0.0071811297236035986im -8.087207652719619e-14 - 5.2677821551394755e-15im … 6.203147047300981e-10 + 3.359686689638984e-11im 0.027607079946306123 - 0.04685530231725083im; 0.16010884187949972 - 0.006510715284073534im -0.0003349868459900974 - 0.2932412211136465im … 0.18462177504117996 - 0.3230622592137367im -0.03982263238386104 - 0.15048317090946645im], [-0.3832135541155027 - 0.7014746900460678im -1.085159028299166e-15 - 5.325749405398765e-16im … 0.18094807427831344 - 0.01597531187012268im 8.69777465211098e-6 + 3.5504469410084697e-6im; -0.3760063779497884 - 0.11032498748609479im -0.1437821752882375 + 0.6038906380627236im … -0.11687570899232559 + 0.13951187552944816im -1.8097397695669992e-6 + 9.780293184799132e-7im; … ; 0.006352898988778047 + 0.011629019384068587im 0.00021621719097911695 - 0.00013305734485912307im … -0.012997191294202516 + 0.0011476929845425218im 0.0458542329323551 + 0.00476494770557633im; -0.064377480128496 - 0.018889160147466454im 0.0012306632700687973 - 0.005168832825746481im … -0.09209546881469251 + 0.10992939491335449im 0.3658570222314737 - 0.29699005637830084im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835654005462, 0.26249194499057155, 0.2624919449905719, 0.2624919449905721, 0.354692148167274, 0.3546921481672742, 0.3546921481673414], [-0.12755037617992662, 0.06475320594611786, 0.22545166517335352, 0.22545166517335374, 0.3219776496107677, 0.3892227690844154, 0.3892227690844164], [-0.10818729216582024, 0.07755003473357376, 0.17278328011399197, 0.17278328011399208, 0.28435185361935245, 0.3305476484326576, 0.5267232426396122], [-0.057773253745124147, 0.01272478220475428, 0.09766073750067888, 0.18417825332898852, 0.3152284179594499, 0.4720312189819647, 0.49791351772856424]], X = [[-0.3701061259340681 - 0.8744856446922376im 1.1329765057673511e-13 - 1.0838496362868767e-13im … -1.0635423596407137e-11 + 2.6902061728050454e-11im -2.5234251626971716e-8 + 6.391570248118633e-8im; -0.09208084962436516 - 0.037316408252552134im 0.24888759630018265 + 0.15598017416542082im … 0.28186660684936915 + 0.136021105553371im 0.06030871801359853 + 0.2534501151618544im; … ; 0.004582794602174774 + 0.01082821334579208im 0.0043102267415996934 - 0.011787701988380563im … 0.022020065820314894 - 0.0367951892682719im -0.00029844886575171753 - 0.08364760738234907im; -0.09208084962435165 - 0.03731640825246342im -0.297080215412956 - 0.25973195162753726im … 0.19422495860404873 - 0.21285353629592377im -0.43763422723190687 - 0.24095227827371327im], [-0.8613229372834532 + 0.32680482592929677im 0.10696541359488648 + 0.17256862974251128im … 1.7709587257054608e-10 - 1.2869407076033215e-10im 6.680833668759752e-11 - 1.8833210221407584e-10im; -0.025663261111252857 + 0.057044340263040345im -0.008771031353208539 - 0.0020584536281443447im … 2.1914110778372662e-10 + 2.5489312949380147e-10im -1.396876597687604e-11 + 1.4138696227618964e-10im; … ; 0.004620840877552781 - 0.0017532484429551294im -0.04453860367976108 - 0.07185468226923344im … 0.06612253589225299 + 0.03011203609583685im 0.07578575969086648 + 0.009297751010015025im; -0.04796641557358912 + 0.1066198297760418im 0.09747175010469043 + 0.02287542588394084im … 0.3009001002409251 - 0.11259532431875527im 0.26603367503342806 - 0.20789044910971552im], [0.6805011731497063 + 0.6273195483239468im -4.28667516317168e-14 + 3.5621435827587644e-14im … 1.0967603948880881e-10 + 6.336140115216184e-11im -6.949545312363227e-9 + 6.928728060681872e-9im; 0.06847712375535965 - 0.0027845748617546643im 5.96272429198133e-5 + 0.052196573503584635im … 0.012880926617189654 - 0.022539818386986602im -0.0017850583353106891 + 0.0036985705741510743im; … ; -0.007789916980102361 - 0.0071811297236035986im -8.087207652719619e-14 - 5.2677821551394755e-15im … 6.203147047300981e-10 + 3.359686689638984e-11im 0.027607079946306123 - 0.04685530231725083im; 0.16010884187949972 - 0.006510715284073534im -0.0003349868459900974 - 0.2932412211136465im … 0.18462177504117996 - 0.3230622592137367im -0.03982263238386104 - 0.15048317090946645im], [-0.3832135541155027 - 0.7014746900460678im -1.085159028299166e-15 - 5.325749405398765e-16im … 0.18094807427831344 - 0.01597531187012268im 8.69777465211098e-6 + 3.5504469410084697e-6im; -0.3760063779497884 - 0.11032498748609479im -0.1437821752882375 + 0.6038906380627236im … -0.11687570899232559 + 0.13951187552944816im -1.8097397695669992e-6 + 9.780293184799132e-7im; … ; 0.006352898988778047 + 0.011629019384068587im 0.00021621719097911695 - 0.00013305734485912307im … -0.012997191294202516 + 0.0011476929845425218im 0.0458542329323551 + 0.00476494770557633im; -0.064377480128496 - 0.018889160147466454im 0.0012306632700687973 - 0.005168832825746481im … -0.09209546881469251 + 0.10992939491335449im 0.3658570222314737 - 0.29699005637830084im]], residual_norms = [[0.0, 1.699149115900259e-12, 5.708996855980223e-13, 2.3877106176401187e-13, 1.7996215848568035e-10, 1.5297897878905016e-10, 3.6349273526985533e-7], [0.0, 0.0, 0.0, 1.0614271050148897e-12, 1.66535751359884e-10, 3.072336742205055e-9, 2.9961444474818063e-9], [1.0467007527556205e-12, 1.8597344361284723e-12, 1.7552587018886163e-12, 2.90851259046683e-12, 1.1503107117270652e-10, 3.1376353501720396e-9, 1.8157339387387043e-6], [8.659592907744723e-13, 8.620679774404032e-13, 9.012251011545449e-13, 2.558240228689497e-12, 2.8950444330385213e-10, 3.552280142030277e-5, 1.3043958190369321e-5]], n_iter = [6, 4, 3, 3], converged = 1, n_matvec = 132)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069828254324527, 0.02761078954091487, 0.0023090552812790347, 0.0002563411841966936, 9.038996187090301e-6, 8.458923121905111e-7, 4.0808986554886156e-8, 3.514431497810767e-9, 1.0591026420895421e-10, 1.3538259747155241e-11], history_Etot = [-7.905260400363515, -7.910544369915707, -7.910593462273395, -7.910594393521073, -7.910594396449991, -7.910594396488433, -7.910594396488504, -7.910594396488506, -7.910594396488506, -7.910594396488504], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000a1c3c679)