Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#782"{DFTK.var"#anderson#781#783"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.04729428368100726 - 0.00015604698177706326im -0.007623280606345152 - 0.025343494511486417im … 0.0175996251382828 - 0.03232660172026036im 0.019773370700645554 + 0.00823399237366284im; 0.038045956406930016 + 0.00972135699314777im 0.04280837052608587 + 0.020055348543574283im … -0.02273029978908237 + 0.0716851806506782im 0.04942727502016072 + 0.038089114759359256im; … ; -0.042908927634861316 - 0.0174401802426943im -0.04223551573315448 + 0.0255721794368537im … 0.03742966052561976 - 0.004774098022209388im 0.018011757255866387 - 0.02292642336514863im; -0.020537423060713697 + 0.01281662650044498im 0.01588790766102033 + 0.008625262899130497im … 0.08963205467935415 - 0.02429341306044638im 0.027046682653528328 - 0.048774092094321375im;;; -0.02807802035697346 - 0.02305743012499548im -0.0690887167946777 + 0.021909154664203803im … 0.005640517750269178 + 0.010331035144202359im 0.010613585992821445 - 0.012193890513946839im; 0.014575330996244877 - 0.0014027305937889673im 0.03162244644331012 + 0.07592072039502826im … 0.04837742229140827 + 0.08373789610678714im 0.039287654108754934 + 0.00980383246102084im; … ; -0.023890874624922585 - 0.06856170166938594im -0.05526384986720925 - 0.03956399159770949im … -0.01860611337383449 - 0.00995429466794677im 0.015449208884428904 - 0.029330813334047266im; -0.0465856741986799 - 0.05807866589048061im -0.10015601994856121 - 0.036867363828187956im … 0.034398920027460325 - 0.021514331544517373im 0.008673195162129492 - 0.09442253812766693im;;; -0.04209205157789989 + 0.0003319978084664263im -0.034776760927308296 + 0.0008363415921656819im … -0.040776757112180845 - 0.035403692183898834im -0.0955201373883927 + 0.0011375435948971814im; 0.0022786919765641275 + 0.016461744257176322im 0.015178858618041833 + 8.067522414161032e-5im … -0.014699014709494723 + 0.034534782482625204im -0.02980994703799005 + 0.031048113544926835im; … ; -0.08700485556354899 - 0.1040303296612265im -0.10443697838494657 - 0.015373973398813984im … 0.01387198001996666 + 0.01345210066909688im 0.018844560343348995 - 0.09356858698396538im; -0.13429112481293518 - 0.01955429751313062im -0.08311096796106861 + 0.013408927828318554im … 0.021045237701599176 - 0.06243371358153776im -0.10327110190100668 - 0.11755543653644451im;;; … ;;; -0.038990642962860304 + 0.004164468595351446im 0.053196894783696824 - 0.04822262705750778im … -0.02625873672029005 - 0.04927378929291226im -0.07720953425814016 - 0.09154962576574915im; 0.04201137763078196 + 0.004048721264432689im 0.017700095125018134 - 0.07158727807758038im … -0.029426290263209157 - 0.012545648797198324im -0.06609208605560055 + 0.007822675189890351im; … ; -0.005607939538964435 - 0.02629408621600898im 0.047854444185482146 + 0.043078187573883674im … 0.12991883533305731 - 0.06659209955606599im 0.031492097879118934 - 0.07526768145940166im; -0.012851289013329607 - 0.04119803148904386im 0.07808621106915999 - 0.014959123664250895im … 0.017292255024772836 - 0.08059432654609655im 0.0121253429535918 - 0.08448332406869319im;;; 0.05805543264213913 - 0.030283794572387862im 0.016925137184332896 - 0.07720945897670141im … 0.020349651097608005 + 0.017615989696967073im 0.00022746282262676998 - 0.017611913569488113im; 0.041420861017005935 - 0.1395898992683512im -0.06202904321636929 - 0.0722264038261828im … -0.0034478616708375426 - 0.011523807538222176im 0.032135106128151354 - 0.022858362785988635im; … ; 0.07079564025941078 + 0.01965495342778603im 0.0969730737998905 - 0.028279479343521225im … 0.008898404828816209 - 0.045943513735968985im 0.024601167180891798 + 0.047640574491317964im; 0.04802011442178353 - 0.03601629889357902im 0.04215222297413594 - 0.07176901047499847im … 0.00637871506192046 + 0.04118544738510086im 0.053040855045284066 - 0.017007568839475733im;;; 0.041582312859279755 - 0.030909988768682447im 0.03257463087184041 - 0.011608411876526876im … 0.06731793778096673 - 0.023682169224884933im 0.019472891850525267 - 0.026075555217126446im; -0.028011870241913636 - 0.06178512959597142im -0.006799695012368569 + 0.014930019334248111im … -0.03070034970248966 - 0.0023460940519369824im 0.010138365588144203 - 0.02936460566819294im; … ; 0.031066932038392496 - 0.034810912826274076im -0.023764288260247433 - 0.023545913652838223im … 0.02300384461444803 + 0.04635298515498569im 0.07643203694779269 + 0.019534061405636745im; -0.017496731278597705 - 0.004813473504021976im -0.0013370936473192166 + 0.026566395962166832im … 0.10310769634361037 + 0.052214260404733176im 0.07883285043237423 - 0.02942507440989408im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.04729428368100726 - 0.00015604698177706326im -0.007623280606345152 - 0.025343494511486417im … 0.0175996251382828 - 0.03232660172026036im 0.019773370700645554 + 0.00823399237366284im; 0.038045956406930016 + 0.00972135699314777im 0.04280837052608587 + 0.020055348543574283im … -0.02273029978908237 + 0.0716851806506782im 0.04942727502016072 + 0.038089114759359256im; … ; -0.042908927634861316 - 0.0174401802426943im -0.04223551573315448 + 0.0255721794368537im … 0.03742966052561976 - 0.004774098022209388im 0.018011757255866387 - 0.02292642336514863im; -0.020537423060713697 + 0.01281662650044498im 0.01588790766102033 + 0.008625262899130497im … 0.08963205467935415 - 0.02429341306044638im 0.027046682653528328 - 0.048774092094321375im;;; -0.02807802035697346 - 0.02305743012499548im -0.0690887167946777 + 0.021909154664203803im … 0.005640517750269178 + 0.010331035144202359im 0.010613585992821445 - 0.012193890513946839im; 0.014575330996244877 - 0.0014027305937889673im 0.03162244644331012 + 0.07592072039502826im … 0.04837742229140827 + 0.08373789610678714im 0.039287654108754934 + 0.00980383246102084im; … ; -0.023890874624922585 - 0.06856170166938594im -0.05526384986720925 - 0.03956399159770949im … -0.01860611337383449 - 0.00995429466794677im 0.015449208884428904 - 0.029330813334047266im; -0.0465856741986799 - 0.05807866589048061im -0.10015601994856121 - 0.036867363828187956im … 0.034398920027460325 - 0.021514331544517373im 0.008673195162129492 - 0.09442253812766693im;;; -0.04209205157789989 + 0.0003319978084664263im -0.034776760927308296 + 0.0008363415921656819im … -0.040776757112180845 - 0.035403692183898834im -0.0955201373883927 + 0.0011375435948971814im; 0.0022786919765641275 + 0.016461744257176322im 0.015178858618041833 + 8.067522414161032e-5im … -0.014699014709494723 + 0.034534782482625204im -0.02980994703799005 + 0.031048113544926835im; … ; -0.08700485556354899 - 0.1040303296612265im -0.10443697838494657 - 0.015373973398813984im … 0.01387198001996666 + 0.01345210066909688im 0.018844560343348995 - 0.09356858698396538im; -0.13429112481293518 - 0.01955429751313062im -0.08311096796106861 + 0.013408927828318554im … 0.021045237701599176 - 0.06243371358153776im -0.10327110190100668 - 0.11755543653644451im;;; … ;;; -0.038990642962860304 + 0.004164468595351446im 0.053196894783696824 - 0.04822262705750778im … -0.02625873672029005 - 0.04927378929291226im -0.07720953425814016 - 0.09154962576574915im; 0.04201137763078196 + 0.004048721264432689im 0.017700095125018134 - 0.07158727807758038im … -0.029426290263209157 - 0.012545648797198324im -0.06609208605560055 + 0.007822675189890351im; … ; -0.005607939538964435 - 0.02629408621600898im 0.047854444185482146 + 0.043078187573883674im … 0.12991883533305731 - 0.06659209955606599im 0.031492097879118934 - 0.07526768145940166im; -0.012851289013329607 - 0.04119803148904386im 0.07808621106915999 - 0.014959123664250895im … 0.017292255024772836 - 0.08059432654609655im 0.0121253429535918 - 0.08448332406869319im;;; 0.05805543264213913 - 0.030283794572387862im 0.016925137184332896 - 0.07720945897670141im … 0.020349651097608005 + 0.017615989696967073im 0.00022746282262676998 - 0.017611913569488113im; 0.041420861017005935 - 0.1395898992683512im -0.06202904321636929 - 0.0722264038261828im … -0.0034478616708375426 - 0.011523807538222176im 0.032135106128151354 - 0.022858362785988635im; … ; 0.07079564025941078 + 0.01965495342778603im 0.0969730737998905 - 0.028279479343521225im … 0.008898404828816209 - 0.045943513735968985im 0.024601167180891798 + 0.047640574491317964im; 0.04802011442178353 - 0.03601629889357902im 0.04215222297413594 - 0.07176901047499847im … 0.00637871506192046 + 0.04118544738510086im 0.053040855045284066 - 0.017007568839475733im;;; 0.041582312859279755 - 0.030909988768682447im 0.03257463087184041 - 0.011608411876526876im … 0.06731793778096673 - 0.023682169224884933im 0.019472891850525267 - 0.026075555217126446im; -0.028011870241913636 - 0.06178512959597142im -0.006799695012368569 + 0.014930019334248111im … -0.03070034970248966 - 0.0023460940519369824im 0.010138365588144203 - 0.02936460566819294im; … ; 0.031066932038392496 - 0.034810912826274076im -0.023764288260247433 - 0.023545913652838223im … 0.02300384461444803 + 0.04635298515498569im 0.07643203694779269 + 0.019534061405636745im; -0.017496731278597705 - 0.004813473504021976im -0.0013370936473192166 + 0.026566395962166832im … 0.10310769634361037 + 0.052214260404733176im 0.07883285043237423 - 0.02942507440989408im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.04729428368100726 - 0.00015604698177706326im -0.007623280606345152 - 0.025343494511486417im … 0.0175996251382828 - 0.03232660172026036im 0.019773370700645554 + 0.00823399237366284im; 0.038045956406930016 + 0.00972135699314777im 0.04280837052608587 + 0.020055348543574283im … -0.02273029978908237 + 0.0716851806506782im 0.04942727502016072 + 0.038089114759359256im; … ; -0.042908927634861316 - 0.0174401802426943im -0.04223551573315448 + 0.0255721794368537im … 0.03742966052561976 - 0.004774098022209388im 0.018011757255866387 - 0.02292642336514863im; -0.020537423060713697 + 0.01281662650044498im 0.01588790766102033 + 0.008625262899130497im … 0.08963205467935415 - 0.02429341306044638im 0.027046682653528328 - 0.048774092094321375im;;; -0.02807802035697346 - 0.02305743012499548im -0.0690887167946777 + 0.021909154664203803im … 0.005640517750269178 + 0.010331035144202359im 0.010613585992821445 - 0.012193890513946839im; 0.014575330996244877 - 0.0014027305937889673im 0.03162244644331012 + 0.07592072039502826im … 0.04837742229140827 + 0.08373789610678714im 0.039287654108754934 + 0.00980383246102084im; … ; -0.023890874624922585 - 0.06856170166938594im -0.05526384986720925 - 0.03956399159770949im … -0.01860611337383449 - 0.00995429466794677im 0.015449208884428904 - 0.029330813334047266im; -0.0465856741986799 - 0.05807866589048061im -0.10015601994856121 - 0.036867363828187956im … 0.034398920027460325 - 0.021514331544517373im 0.008673195162129492 - 0.09442253812766693im;;; -0.04209205157789989 + 0.0003319978084664263im -0.034776760927308296 + 0.0008363415921656819im … -0.040776757112180845 - 0.035403692183898834im -0.0955201373883927 + 0.0011375435948971814im; 0.0022786919765641275 + 0.016461744257176322im 0.015178858618041833 + 8.067522414161032e-5im … -0.014699014709494723 + 0.034534782482625204im -0.02980994703799005 + 0.031048113544926835im; … ; -0.08700485556354899 - 0.1040303296612265im -0.10443697838494657 - 0.015373973398813984im … 0.01387198001996666 + 0.01345210066909688im 0.018844560343348995 - 0.09356858698396538im; -0.13429112481293518 - 0.01955429751313062im -0.08311096796106861 + 0.013408927828318554im … 0.021045237701599176 - 0.06243371358153776im -0.10327110190100668 - 0.11755543653644451im;;; … ;;; -0.038990642962860304 + 0.004164468595351446im 0.053196894783696824 - 0.04822262705750778im … -0.02625873672029005 - 0.04927378929291226im -0.07720953425814016 - 0.09154962576574915im; 0.04201137763078196 + 0.004048721264432689im 0.017700095125018134 - 0.07158727807758038im … -0.029426290263209157 - 0.012545648797198324im -0.06609208605560055 + 0.007822675189890351im; … ; -0.005607939538964435 - 0.02629408621600898im 0.047854444185482146 + 0.043078187573883674im … 0.12991883533305731 - 0.06659209955606599im 0.031492097879118934 - 0.07526768145940166im; -0.012851289013329607 - 0.04119803148904386im 0.07808621106915999 - 0.014959123664250895im … 0.017292255024772836 - 0.08059432654609655im 0.0121253429535918 - 0.08448332406869319im;;; 0.05805543264213913 - 0.030283794572387862im 0.016925137184332896 - 0.07720945897670141im … 0.020349651097608005 + 0.017615989696967073im 0.00022746282262676998 - 0.017611913569488113im; 0.041420861017005935 - 0.1395898992683512im -0.06202904321636929 - 0.0722264038261828im … -0.0034478616708375426 - 0.011523807538222176im 0.032135106128151354 - 0.022858362785988635im; … ; 0.07079564025941078 + 0.01965495342778603im 0.0969730737998905 - 0.028279479343521225im … 0.008898404828816209 - 0.045943513735968985im 0.024601167180891798 + 0.047640574491317964im; 0.04802011442178353 - 0.03601629889357902im 0.04215222297413594 - 0.07176901047499847im … 0.00637871506192046 + 0.04118544738510086im 0.053040855045284066 - 0.017007568839475733im;;; 0.041582312859279755 - 0.030909988768682447im 0.03257463087184041 - 0.011608411876526876im … 0.06731793778096673 - 0.023682169224884933im 0.019472891850525267 - 0.026075555217126446im; -0.028011870241913636 - 0.06178512959597142im -0.006799695012368569 + 0.014930019334248111im … -0.03070034970248966 - 0.0023460940519369824im 0.010138365588144203 - 0.02936460566819294im; … ; 0.031066932038392496 - 0.034810912826274076im -0.023764288260247433 - 0.023545913652838223im … 0.02300384461444803 + 0.04635298515498569im 0.07643203694779269 + 0.019534061405636745im; -0.017496731278597705 - 0.004813473504021976im -0.0013370936473192166 + 0.026566395962166832im … 0.10310769634361037 + 0.052214260404733176im 0.07883285043237423 - 0.02942507440989408im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722829 -11.100308396742532 … -8.289845772412649 -11.100308396742593; -11.100308396742532 -9.130057825947935 … -9.130057795896642 -11.100308356759555; … ; -8.289845772412649 -9.130057795896642 … -4.149589921643466 -6.287956198199527; -11.10030839674259 -11.100308356759557 … -6.287956198199528 -9.111848223577748;;; -11.100308396742534 -9.130057825947933 … -9.130057795896644 -11.100308356759557; -9.130057825947935 -6.903159481982161 … -9.130057827297616 -10.0538838265524; … ; -9.130057795896642 -9.130057827297616 … -5.294353669214553 -7.547399206521829; -11.100308356759555 -10.0538838265524 … -7.54739920652183 -10.053883826552505;;; -8.289845772412948 -6.307621931516787 … -8.289845781011902 -9.111848193526416; -6.307621931516789 -4.516655665815691 … -7.5473992376116605 -7.547399206522061; … ; -8.2898457810119 -7.54739923761166 … -5.768969083581372 -7.5473992376117325; -9.111848193526416 -7.54739920652206 … -7.547399237611733 -9.111848224927654;;; … ;;; -5.301031718249893 -6.307621955788995 … -2.5497035732761386 -3.849582179387956; -6.307621955788996 -6.90315949520899 … -3.3290606985463778 -4.878419358630752; … ; -2.5497035732761377 -3.329060698546378 … -1.2567984709025835 -1.8141947460411825; -3.8495821793879546 -4.878419358630754 … -1.814194746041182 -2.7147673353227635;;; -8.28984577241265 -9.130057795896642 … -4.149589921643467 -6.2879561981995264; -9.130057795896644 -9.130057827297614 … -5.294353669214552 -7.547399206521828; … ; -4.149589921643467 -5.294353669214553 … -1.909449239915455 -2.894612367852451; -6.287956198199527 -7.5473992065218285 … -2.894612367852451 -4.485542759372255;;; -11.100308396742593 -11.100308356759557 … -6.287956198199528 -9.111848223577745; -11.100308356759555 -10.0538838265524 … -7.547399206521831 -10.053883826552505; … ; -6.2879561981995264 -7.54739920652183 … -2.894612367852451 -4.485542759372255; -9.111848223577748 -10.053883826552505 … -4.485542759372256 -6.871104500135559]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.04729428368100726 - 0.00015604698177706326im -0.007623280606345152 - 0.025343494511486417im … 0.0175996251382828 - 0.03232660172026036im 0.019773370700645554 + 0.00823399237366284im; 0.038045956406930016 + 0.00972135699314777im 0.04280837052608587 + 0.020055348543574283im … -0.02273029978908237 + 0.0716851806506782im 0.04942727502016072 + 0.038089114759359256im; … ; -0.042908927634861316 - 0.0174401802426943im -0.04223551573315448 + 0.0255721794368537im … 0.03742966052561976 - 0.004774098022209388im 0.018011757255866387 - 0.02292642336514863im; -0.020537423060713697 + 0.01281662650044498im 0.01588790766102033 + 0.008625262899130497im … 0.08963205467935415 - 0.02429341306044638im 0.027046682653528328 - 0.048774092094321375im;;; -0.02807802035697346 - 0.02305743012499548im -0.0690887167946777 + 0.021909154664203803im … 0.005640517750269178 + 0.010331035144202359im 0.010613585992821445 - 0.012193890513946839im; 0.014575330996244877 - 0.0014027305937889673im 0.03162244644331012 + 0.07592072039502826im … 0.04837742229140827 + 0.08373789610678714im 0.039287654108754934 + 0.00980383246102084im; … ; -0.023890874624922585 - 0.06856170166938594im -0.05526384986720925 - 0.03956399159770949im … -0.01860611337383449 - 0.00995429466794677im 0.015449208884428904 - 0.029330813334047266im; -0.0465856741986799 - 0.05807866589048061im -0.10015601994856121 - 0.036867363828187956im … 0.034398920027460325 - 0.021514331544517373im 0.008673195162129492 - 0.09442253812766693im;;; -0.04209205157789989 + 0.0003319978084664263im -0.034776760927308296 + 0.0008363415921656819im … -0.040776757112180845 - 0.035403692183898834im -0.0955201373883927 + 0.0011375435948971814im; 0.0022786919765641275 + 0.016461744257176322im 0.015178858618041833 + 8.067522414161032e-5im … -0.014699014709494723 + 0.034534782482625204im -0.02980994703799005 + 0.031048113544926835im; … ; -0.08700485556354899 - 0.1040303296612265im -0.10443697838494657 - 0.015373973398813984im … 0.01387198001996666 + 0.01345210066909688im 0.018844560343348995 - 0.09356858698396538im; -0.13429112481293518 - 0.01955429751313062im -0.08311096796106861 + 0.013408927828318554im … 0.021045237701599176 - 0.06243371358153776im -0.10327110190100668 - 0.11755543653644451im;;; … ;;; -0.038990642962860304 + 0.004164468595351446im 0.053196894783696824 - 0.04822262705750778im … -0.02625873672029005 - 0.04927378929291226im -0.07720953425814016 - 0.09154962576574915im; 0.04201137763078196 + 0.004048721264432689im 0.017700095125018134 - 0.07158727807758038im … -0.029426290263209157 - 0.012545648797198324im -0.06609208605560055 + 0.007822675189890351im; … ; -0.005607939538964435 - 0.02629408621600898im 0.047854444185482146 + 0.043078187573883674im … 0.12991883533305731 - 0.06659209955606599im 0.031492097879118934 - 0.07526768145940166im; -0.012851289013329607 - 0.04119803148904386im 0.07808621106915999 - 0.014959123664250895im … 0.017292255024772836 - 0.08059432654609655im 0.0121253429535918 - 0.08448332406869319im;;; 0.05805543264213913 - 0.030283794572387862im 0.016925137184332896 - 0.07720945897670141im … 0.020349651097608005 + 0.017615989696967073im 0.00022746282262676998 - 0.017611913569488113im; 0.041420861017005935 - 0.1395898992683512im -0.06202904321636929 - 0.0722264038261828im … -0.0034478616708375426 - 0.011523807538222176im 0.032135106128151354 - 0.022858362785988635im; … ; 0.07079564025941078 + 0.01965495342778603im 0.0969730737998905 - 0.028279479343521225im … 0.008898404828816209 - 0.045943513735968985im 0.024601167180891798 + 0.047640574491317964im; 0.04802011442178353 - 0.03601629889357902im 0.04215222297413594 - 0.07176901047499847im … 0.00637871506192046 + 0.04118544738510086im 0.053040855045284066 - 0.017007568839475733im;;; 0.041582312859279755 - 0.030909988768682447im 0.03257463087184041 - 0.011608411876526876im … 0.06731793778096673 - 0.023682169224884933im 0.019472891850525267 - 0.026075555217126446im; -0.028011870241913636 - 0.06178512959597142im -0.006799695012368569 + 0.014930019334248111im … -0.03070034970248966 - 0.0023460940519369824im 0.010138365588144203 - 0.02936460566819294im; … ; 0.031066932038392496 - 0.034810912826274076im -0.023764288260247433 - 0.023545913652838223im … 0.02300384461444803 + 0.04635298515498569im 0.07643203694779269 + 0.019534061405636745im; -0.017496731278597705 - 0.004813473504021976im -0.0013370936473192166 + 0.026566395962166832im … 0.10310769634361037 + 0.052214260404733176im 0.07883285043237423 - 0.02942507440989408im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.58978454238642e-5 0.0011262712728486951 … 0.006697037550124962 0.001126271272848702; 0.0011262712728486951 0.0052743344574027445 … 0.005274334457402775 0.001126271272848702; … ; 0.006697037550124966 0.005274334457402763 … 0.02324475419113398 0.01225898682531079; 0.0011262712728486951 0.0011262712728486919 … 0.012258986825310798 0.003770008629937461;;; 0.0011262712728486994 0.005274334457402739 … 0.005274334457402765 0.0011262712728487081; 0.0052743344574027375 0.01462006530474931 … 0.005274334457402777 0.0025880808748782176; … ; 0.005274334457402765 0.005274334457402765 … 0.01810768664620888 0.0089220030447976; 0.0011262712728487075 0.0025880808748782102 … 0.008922003044797603 0.0025880808748782328;;; 0.006697037550124945 0.016412109101636888 … 0.006697037550124959 0.0037700086299374555; 0.016412109101636884 0.03127783931592571 … 0.008922003044797585 0.00892200304479757; … ; 0.006697037550124962 0.008922003044797575 … 0.016476756359509567 0.008922003044797594; 0.003770008629937451 0.008922003044797558 … 0.008922003044797601 0.0037700086299374594;;; … ;;; 0.019853839853451776 0.0164121091016369 … 0.03715667363573856 0.027190800686646623; 0.016412109101636894 0.01462006530474931 … 0.03230127212650282 0.022322100931766245; … ; 0.03715667363573856 0.032301272126502814 … 0.046296980701508665 0.04263658273151091; 0.027190800686646616 0.02232210093176624 … 0.04263658273151092 0.034772229142074;;; 0.006697037550124953 0.005274334457402739 … 0.023244754191133955 0.012258986825310774; 0.0052743344574027375 0.005274334457402741 … 0.018107686646208845 0.008922003044797573; … ; 0.02324475419113396 0.01810768664620884 … 0.04037111033565906 0.031491603811477434; 0.01225898682531077 0.008922003044797564 … 0.03149160381147745 0.02004716343282462;;; 0.0011262712728487012 0.0011262712728486936 … 0.012258986825310781 0.0037700086299374586; 0.0011262712728486914 0.0025880808748782124 … 0.0089220030447976 0.0025880808748782185; … ; 0.012258986825310781 0.008922003044797585 … 0.03149160381147746 0.020047163432824627; 0.003770008629937459 0.002588080874878213 … 0.020047163432824637 0.008952603496839032;;;;], eigenvalues = [[-0.17836835653947425, 0.26249194499119144, 0.2624919449911914, 0.26249194499119144, 0.35469214816759664, 0.35469214816759653, 0.35469214817952877], [-0.1275503761793608, 0.06475320594669184, 0.22545166517390267, 0.22545166517390275, 0.32197764961136005, 0.3892227690848008, 0.389222769084801], [-0.10818729216525545, 0.07755003473411991, 0.17278328011451108, 0.1727832801145111, 0.28435185362001647, 0.3305476484333424, 0.5267232426389864], [-0.05777325374458107, 0.012724782205304139, 0.09766073750127947, 0.1841782533295107, 0.3152284179600988, 0.47203121829463873, 0.49791351763184555]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930560395, n_iter = 10, ψ = Matrix{ComplexF64}[[0.31838026897852595 - 0.8946159463993772im -1.8374989757662954e-13 + 1.7086209247405186e-13im … 1.640199881534194e-13 - 5.594702757719764e-13im 1.0869293435179919e-7 - 1.4802440208565886e-7im; -0.04263267041702933 - 0.08974325938770895im 0.31782768724297666 - 0.04317597275090738im … 0.06462154851800442 + 0.1157217186278033im -0.18766282085977307 - 0.3772293539624108im; … ; -0.00394230539804191 + 0.011077474386172109im 0.033344170914273136 + 0.0068296415471669845im … 0.021375896020546046 - 0.012812489979920875im -0.03711251672617089 + 0.025249294257896873im; -0.042632670417061765 - 0.08974325938765164im -0.05890590169482177 - 0.12771120140063857im … 0.11541713226977544 - 0.08707364295956238im -0.25803217326731737 - 0.0073177182411120825im], [-0.6173230634686622 - 0.6838061361604414im 0.20302577041242947 + 0.0014381325208815286im … -4.0547692885411004e-11 - 8.932577002993866e-11im 6.746591049267865e-12 + 3.202969029136016e-12im; -0.06246976048219322 - 0.0031919824936242403im -0.006415530937832486 + 0.006325281426292401im … -5.346839191840125e-10 - 1.6418472042006235e-10im 1.1295530396337846e-10 + 1.3741979097708122e-10im; … ; 0.0033118259398879036 + 0.0036684955311923405im -0.08453652467001893 - 0.0005988142544331251im … 0.09164737424000226 + 0.043320409291275605im -0.02881657152764805 - 0.001600147268570029im; -0.11676031658930659 - 0.0059660367452577315im 0.07129526770439329 - 0.07029233230506073im … 0.4220086199602322 - 0.15110565961117214im -0.09510504765039557 + 0.0850985730948835im], [-0.8866038489577195 + 0.26560360950240813im 3.04092325231599e-15 + 2.224700487892931e-15im … 3.2348828374192304e-12 + 3.851043199486355e-13im -1.0659201207377949e-8 - 2.0574891358798746e-10im; -0.03251539721850319 + 0.06032925723635728im -0.028270271190347664 + 0.04387798545699319im … 0.02428020514675419 - 0.009188761928064464im -0.0010019139438879633 + 0.0019458755490044345im; … ; 0.010149240956829647 - 0.003040450405229142im -2.7367813534697706e-14 + 1.606302609317295e-15im … 3.215188891494255e-11 + 8.929300893765007e-12im -0.052228729449903984 + 0.012757131187968342im; -0.0760254272727452 + 0.1410580202241215im 0.15882285538282515 - 0.24650725462846015im … 0.3480071429198334 - 0.13170213230961775im -0.08076763680293175 + 0.13307525259939132im], [-0.7992560009884183 + 0.010450536685172611im -7.370146007437756e-16 + 2.2608536766057593e-15im … 0.04404769886905469 + 0.17622037386077832im -5.199308101460132e-6 + 1.56903812660415e-6im; -0.2734388310523369 + 0.2806841726844086im 0.4916798152332792 - 0.37895669404636345im … -0.1560546612086899 - 0.0936418870618839im 2.273903859212851e-6 - 1.6768466277809064e-6im; … ; 0.013250034050022815 - 0.00017324857961571497im -0.00025177668241146533 - 3.259805116114473e-5im … -0.003164155826686782 - 0.012660148792545942im 0.04591849032523899 - 0.004068306041651092im; -0.04681650084878255 + 0.048057003309075016im -0.004208395707098988 + 0.003243573714047373im … -0.12295106332387552 - 0.07377931028345139im 0.30251057967112044 - 0.3613303983585831im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653947425, 0.26249194499119144, 0.2624919449911914, 0.26249194499119144, 0.35469214816759664, 0.35469214816759653, 0.35469214817952877], [-0.1275503761793608, 0.06475320594669184, 0.22545166517390267, 0.22545166517390275, 0.32197764961136005, 0.3892227690848008, 0.389222769084801], [-0.10818729216525545, 0.07755003473411991, 0.17278328011451108, 0.1727832801145111, 0.28435185362001647, 0.3305476484333424, 0.5267232426389864], [-0.05777325374458107, 0.012724782205304139, 0.09766073750127947, 0.1841782533295107, 0.3152284179600988, 0.47203121829463873, 0.49791351763184555]], X = [[0.31838026897852595 - 0.8946159463993772im -1.8374989757662954e-13 + 1.7086209247405186e-13im … 1.640199881534194e-13 - 5.594702757719764e-13im 1.0869293435179919e-7 - 1.4802440208565886e-7im; -0.04263267041702933 - 0.08974325938770895im 0.31782768724297666 - 0.04317597275090738im … 0.06462154851800442 + 0.1157217186278033im -0.18766282085977307 - 0.3772293539624108im; … ; -0.00394230539804191 + 0.011077474386172109im 0.033344170914273136 + 0.0068296415471669845im … 0.021375896020546046 - 0.012812489979920875im -0.03711251672617089 + 0.025249294257896873im; -0.042632670417061765 - 0.08974325938765164im -0.05890590169482177 - 0.12771120140063857im … 0.11541713226977544 - 0.08707364295956238im -0.25803217326731737 - 0.0073177182411120825im], [-0.6173230634686622 - 0.6838061361604414im 0.20302577041242947 + 0.0014381325208815286im … -4.0547692885411004e-11 - 8.932577002993866e-11im 6.746591049267865e-12 + 3.202969029136016e-12im; -0.06246976048219322 - 0.0031919824936242403im -0.006415530937832486 + 0.006325281426292401im … -5.346839191840125e-10 - 1.6418472042006235e-10im 1.1295530396337846e-10 + 1.3741979097708122e-10im; … ; 0.0033118259398879036 + 0.0036684955311923405im -0.08453652467001893 - 0.0005988142544331251im … 0.09164737424000226 + 0.043320409291275605im -0.02881657152764805 - 0.001600147268570029im; -0.11676031658930659 - 0.0059660367452577315im 0.07129526770439329 - 0.07029233230506073im … 0.4220086199602322 - 0.15110565961117214im -0.09510504765039557 + 0.0850985730948835im], [-0.8866038489577195 + 0.26560360950240813im 3.04092325231599e-15 + 2.224700487892931e-15im … 3.2348828374192304e-12 + 3.851043199486355e-13im -1.0659201207377949e-8 - 2.0574891358798746e-10im; -0.03251539721850319 + 0.06032925723635728im -0.028270271190347664 + 0.04387798545699319im … 0.02428020514675419 - 0.009188761928064464im -0.0010019139438879633 + 0.0019458755490044345im; … ; 0.010149240956829647 - 0.003040450405229142im -2.7367813534697706e-14 + 1.606302609317295e-15im … 3.215188891494255e-11 + 8.929300893765007e-12im -0.052228729449903984 + 0.012757131187968342im; -0.0760254272727452 + 0.1410580202241215im 0.15882285538282515 - 0.24650725462846015im … 0.3480071429198334 - 0.13170213230961775im -0.08076763680293175 + 0.13307525259939132im], [-0.7992560009884183 + 0.010450536685172611im -7.370146007437756e-16 + 2.2608536766057593e-15im … 0.04404769886905469 + 0.17622037386077832im -5.199308101460132e-6 + 1.56903812660415e-6im; -0.2734388310523369 + 0.2806841726844086im 0.4916798152332792 - 0.37895669404636345im … -0.1560546612086899 - 0.0936418870618839im 2.273903859212851e-6 - 1.6768466277809064e-6im; … ; 0.013250034050022815 - 0.00017324857961571497im -0.00025177668241146533 - 3.259805116114473e-5im … -0.003164155826686782 - 0.012660148792545942im 0.04591849032523899 - 0.004068306041651092im; -0.04681650084878255 + 0.048057003309075016im -0.004208395707098988 + 0.003243573714047373im … -0.12295106332387552 - 0.07377931028345139im 0.30251057967112044 - 0.3613303983585831im]], residual_norms = [[4.082638472109348e-12, 5.0854036268422e-12, 3.2729294689021804e-12, 4.519698665044416e-12, 1.5757357981561652e-11, 7.252399901583843e-12, 2.1594088770169385e-6], [3.2191335706525712e-12, 4.088066853969437e-12, 5.193880680638528e-12, 5.085792170583592e-12, 6.319199436639915e-10, 1.4644563227542515e-8, 1.3972673369377402e-8], [1.157226426672039e-12, 1.2305022944950892e-12, 1.2704314794694365e-12, 1.7827588122964329e-12, 5.963108696345758e-12, 2.0642751702400668e-10, 6.752769402055759e-7], [9.223932202274289e-13, 9.203898320544422e-13, 1.1716915319023473e-12, 3.829825139241105e-12, 1.2881742584679436e-10, 1.0583784675006266e-5, 6.364017967026737e-6]], n_iter = [3, 3, 3, 3], converged = 1, n_matvec = 109)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2106933984662446, 0.027609936090400924, 0.002309103763328073, 0.00025718488519425734, 9.20781495047228e-6, 9.401463679582996e-7, 3.549050537357808e-8, 2.3092885745821174e-9, 2.1633792290463334e-10, 4.421800913449585e-11], history_Etot = [-7.9052640419940055, -7.9105443710122785, -7.910593453048227, -7.910594393232916, -7.9105943964418035, -7.910594396488433, -7.9105943964885075, -7.910594396488507, -7.910594396488506, -7.910594396488504], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000b8d84b6b)