Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#780"{DFTK.var"#anderson#779#781"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03869084933299569 - 0.04261188524262596im 0.011693367819041284 - 0.010947241177370625im … 0.06590713446338967 - 0.0551235023236662im 0.01290527689143102 - 0.09089406970643774im; 0.025895229798138884 - 0.011504146360238195im 0.0292267146013374 - 0.09289407642709353im … 0.05191783055320871 - 0.01835434099966424im -0.022172343836256818 - 0.06189520140274109im; … ; 0.05923824962928056 + 0.005364952926055629im 0.014566869855602751 - 0.05109178415062479im … 0.0005185170124537919 + 0.044059040267565im 0.02475408621834798 + 0.0410021328221374im; 0.004520866271260833 - 0.07766644566560002im -0.056245738218982114 - 0.027361402863343272im … 0.10747954233346818 + 0.004123896632051374im 0.07391377339795813 - 0.0669927286129832im;;; 0.006739511589668894 + 0.020516422348537948im 0.031427750486387546 - 0.025124333081835093im … -0.03975713530556173 + 0.022250620976528447im -0.011351300286389782 + 0.035346931839921526im; 0.052954064536143625 - 0.06652642030035502im 0.05288126682317752 - 0.08982480720208696im … 0.035499405133384176 + 0.03432630538201644im 0.04090311864441848 - 0.005247746159164499im; … ; -0.0338143149311861 - 0.07826330259486541im -0.0844762109363353 - 0.01638721390259333im … 0.05763268205705567 + 0.048597246712061976im 0.037403290869610785 - 0.039050857991860935im; -0.09457949394752282 - 0.008325942557252164im -0.03977329365772414 + 0.06713540099999382im … 0.02520729290888566 - 0.05810802575501974im -0.07001259574288754 - 0.049851400020381284im;;; 0.046377703061654285 - 0.02233419951901379im 0.003421849161553317 - 0.09340237312702461im … -0.03913803713799718 + 0.11935479311687343im 0.03723222901370851 + 0.08474273557624598im; 0.008132348815777402 - 0.05836018969695323im -0.01793357196867569 - 0.0931965692246492im … 0.023625279019137666 + 0.058388597538859im 0.017911602550538266 - 0.007131095450958167im; … ; -0.10411615402191284 + 0.027427341859430344im -0.021082033791066393 + 0.07922054775349596im … 0.022258113937070785 - 0.014351256523161202im -0.06627142774038547 - 0.04058638302888433im; -0.010919917521912981 + 0.10404725031032655im 0.06310057811938585 + 0.009072326932089432im … -0.08203990182420613 + 0.017523791242791673im -0.09834237504966051 + 0.09317966245493212im;;; … ;;; 0.01577640393323041 + 0.1006972853457886im -0.008559363246384899 - 0.08658293697193485im … -0.05307403518191974 - 0.10754732888685689im -0.17914560605346225 + 0.060272807018787594im; 0.025934783473758938 - 0.07836949429716784im -0.11951389573177307 - 0.05837667490511285im … -0.07703132055163303 - 0.05592616776904747im -0.018155133033094142 + 0.06426800645941275im; … ; -0.1001470256008176 - 0.036987621684567075im -0.039103610294882005 + 0.02193247532934662im … 0.007228697693430389 - 0.020404018828529276im -0.0018633602264759644 - 0.05291921387128872im; -0.14466238142691412 + 0.0981371432506269im 0.014147265381908712 + 0.021197951737658476im … 0.009816849311252158 - 0.07016024644397989im -0.14383342612878358 - 0.07626457723939144im;;; 0.01738404860962292 - 0.08053743986186203im -0.18509696164873807 - 0.038129875731693144im … -0.07274645660227541 - 0.0710757153090452im -0.023373208801491144 + 0.06491190798743615im; -0.16924883484715564 - 0.10203778402734232im -0.13974281244741543 + 0.12961413912523773im … -0.04342216710982906 + 0.010778335157179162im 0.04633705103545967 - 0.05871253496691067im; … ; -0.07976726604846128 + 0.023570898250657873im -0.009764402354513662 + 0.0047238129057202635im … 0.07874412491371219 - 0.06281637537202008im -0.005589561184200103 - 0.06733060515768789im; 0.001696149119638347 + 0.07667553161941823im -0.030908997144421576 - 0.06819567000883461im … 0.015178426369011455 - 0.11020740905869071im -0.10629603346800257 + 0.010013927078989765im;;; -0.0823032155934493 - 0.08465458151767505im -0.08098634183640932 + 0.07709569241965022im … 0.03020461230050713 + 0.006905976103975503im 0.09851181425546063 - 0.0512340170504342im; -0.12693246385949808 + 0.012637357050897143im 0.07299393537075775 + 0.061516992533781796im … 0.07685959116537215 + 0.0069908107159708036im -0.0066115427254364555 - 0.1353884569903142im; … ; -0.016160803667667308 + 0.03935679222741586im 0.009787828842569499 - 0.001597563943522104im … 0.03250556668758925 - 0.07284150514940294im -0.02586675244983736 - 0.02698923945022783im; 0.050500419842231616 - 0.02436576581190758im -0.07584660109559344 - 0.024903757500283615im … 0.018461178051411224 - 0.014891862830926313im 0.026253250673762787 + 0.015299603469389203im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03869084933299569 - 0.04261188524262596im 0.011693367819041284 - 0.010947241177370625im … 0.06590713446338967 - 0.0551235023236662im 0.01290527689143102 - 0.09089406970643774im; 0.025895229798138884 - 0.011504146360238195im 0.0292267146013374 - 0.09289407642709353im … 0.05191783055320871 - 0.01835434099966424im -0.022172343836256818 - 0.06189520140274109im; … ; 0.05923824962928056 + 0.005364952926055629im 0.014566869855602751 - 0.05109178415062479im … 0.0005185170124537919 + 0.044059040267565im 0.02475408621834798 + 0.0410021328221374im; 0.004520866271260833 - 0.07766644566560002im -0.056245738218982114 - 0.027361402863343272im … 0.10747954233346818 + 0.004123896632051374im 0.07391377339795813 - 0.0669927286129832im;;; 0.006739511589668894 + 0.020516422348537948im 0.031427750486387546 - 0.025124333081835093im … -0.03975713530556173 + 0.022250620976528447im -0.011351300286389782 + 0.035346931839921526im; 0.052954064536143625 - 0.06652642030035502im 0.05288126682317752 - 0.08982480720208696im … 0.035499405133384176 + 0.03432630538201644im 0.04090311864441848 - 0.005247746159164499im; … ; -0.0338143149311861 - 0.07826330259486541im -0.0844762109363353 - 0.01638721390259333im … 0.05763268205705567 + 0.048597246712061976im 0.037403290869610785 - 0.039050857991860935im; -0.09457949394752282 - 0.008325942557252164im -0.03977329365772414 + 0.06713540099999382im … 0.02520729290888566 - 0.05810802575501974im -0.07001259574288754 - 0.049851400020381284im;;; 0.046377703061654285 - 0.02233419951901379im 0.003421849161553317 - 0.09340237312702461im … -0.03913803713799718 + 0.11935479311687343im 0.03723222901370851 + 0.08474273557624598im; 0.008132348815777402 - 0.05836018969695323im -0.01793357196867569 - 0.0931965692246492im … 0.023625279019137666 + 0.058388597538859im 0.017911602550538266 - 0.007131095450958167im; … ; -0.10411615402191284 + 0.027427341859430344im -0.021082033791066393 + 0.07922054775349596im … 0.022258113937070785 - 0.014351256523161202im -0.06627142774038547 - 0.04058638302888433im; -0.010919917521912981 + 0.10404725031032655im 0.06310057811938585 + 0.009072326932089432im … -0.08203990182420613 + 0.017523791242791673im -0.09834237504966051 + 0.09317966245493212im;;; … ;;; 0.01577640393323041 + 0.1006972853457886im -0.008559363246384899 - 0.08658293697193485im … -0.05307403518191974 - 0.10754732888685689im -0.17914560605346225 + 0.060272807018787594im; 0.025934783473758938 - 0.07836949429716784im -0.11951389573177307 - 0.05837667490511285im … -0.07703132055163303 - 0.05592616776904747im -0.018155133033094142 + 0.06426800645941275im; … ; -0.1001470256008176 - 0.036987621684567075im -0.039103610294882005 + 0.02193247532934662im … 0.007228697693430389 - 0.020404018828529276im -0.0018633602264759644 - 0.05291921387128872im; -0.14466238142691412 + 0.0981371432506269im 0.014147265381908712 + 0.021197951737658476im … 0.009816849311252158 - 0.07016024644397989im -0.14383342612878358 - 0.07626457723939144im;;; 0.01738404860962292 - 0.08053743986186203im -0.18509696164873807 - 0.038129875731693144im … -0.07274645660227541 - 0.0710757153090452im -0.023373208801491144 + 0.06491190798743615im; -0.16924883484715564 - 0.10203778402734232im -0.13974281244741543 + 0.12961413912523773im … -0.04342216710982906 + 0.010778335157179162im 0.04633705103545967 - 0.05871253496691067im; … ; -0.07976726604846128 + 0.023570898250657873im -0.009764402354513662 + 0.0047238129057202635im … 0.07874412491371219 - 0.06281637537202008im -0.005589561184200103 - 0.06733060515768789im; 0.001696149119638347 + 0.07667553161941823im -0.030908997144421576 - 0.06819567000883461im … 0.015178426369011455 - 0.11020740905869071im -0.10629603346800257 + 0.010013927078989765im;;; -0.0823032155934493 - 0.08465458151767505im -0.08098634183640932 + 0.07709569241965022im … 0.03020461230050713 + 0.006905976103975503im 0.09851181425546063 - 0.0512340170504342im; -0.12693246385949808 + 0.012637357050897143im 0.07299393537075775 + 0.061516992533781796im … 0.07685959116537215 + 0.0069908107159708036im -0.0066115427254364555 - 0.1353884569903142im; … ; -0.016160803667667308 + 0.03935679222741586im 0.009787828842569499 - 0.001597563943522104im … 0.03250556668758925 - 0.07284150514940294im -0.02586675244983736 - 0.02698923945022783im; 0.050500419842231616 - 0.02436576581190758im -0.07584660109559344 - 0.024903757500283615im … 0.018461178051411224 - 0.014891862830926313im 0.026253250673762787 + 0.015299603469389203im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03869084933299569 - 0.04261188524262596im 0.011693367819041284 - 0.010947241177370625im … 0.06590713446338967 - 0.0551235023236662im 0.01290527689143102 - 0.09089406970643774im; 0.025895229798138884 - 0.011504146360238195im 0.0292267146013374 - 0.09289407642709353im … 0.05191783055320871 - 0.01835434099966424im -0.022172343836256818 - 0.06189520140274109im; … ; 0.05923824962928056 + 0.005364952926055629im 0.014566869855602751 - 0.05109178415062479im … 0.0005185170124537919 + 0.044059040267565im 0.02475408621834798 + 0.0410021328221374im; 0.004520866271260833 - 0.07766644566560002im -0.056245738218982114 - 0.027361402863343272im … 0.10747954233346818 + 0.004123896632051374im 0.07391377339795813 - 0.0669927286129832im;;; 0.006739511589668894 + 0.020516422348537948im 0.031427750486387546 - 0.025124333081835093im … -0.03975713530556173 + 0.022250620976528447im -0.011351300286389782 + 0.035346931839921526im; 0.052954064536143625 - 0.06652642030035502im 0.05288126682317752 - 0.08982480720208696im … 0.035499405133384176 + 0.03432630538201644im 0.04090311864441848 - 0.005247746159164499im; … ; -0.0338143149311861 - 0.07826330259486541im -0.0844762109363353 - 0.01638721390259333im … 0.05763268205705567 + 0.048597246712061976im 0.037403290869610785 - 0.039050857991860935im; -0.09457949394752282 - 0.008325942557252164im -0.03977329365772414 + 0.06713540099999382im … 0.02520729290888566 - 0.05810802575501974im -0.07001259574288754 - 0.049851400020381284im;;; 0.046377703061654285 - 0.02233419951901379im 0.003421849161553317 - 0.09340237312702461im … -0.03913803713799718 + 0.11935479311687343im 0.03723222901370851 + 0.08474273557624598im; 0.008132348815777402 - 0.05836018969695323im -0.01793357196867569 - 0.0931965692246492im … 0.023625279019137666 + 0.058388597538859im 0.017911602550538266 - 0.007131095450958167im; … ; -0.10411615402191284 + 0.027427341859430344im -0.021082033791066393 + 0.07922054775349596im … 0.022258113937070785 - 0.014351256523161202im -0.06627142774038547 - 0.04058638302888433im; -0.010919917521912981 + 0.10404725031032655im 0.06310057811938585 + 0.009072326932089432im … -0.08203990182420613 + 0.017523791242791673im -0.09834237504966051 + 0.09317966245493212im;;; … ;;; 0.01577640393323041 + 0.1006972853457886im -0.008559363246384899 - 0.08658293697193485im … -0.05307403518191974 - 0.10754732888685689im -0.17914560605346225 + 0.060272807018787594im; 0.025934783473758938 - 0.07836949429716784im -0.11951389573177307 - 0.05837667490511285im … -0.07703132055163303 - 0.05592616776904747im -0.018155133033094142 + 0.06426800645941275im; … ; -0.1001470256008176 - 0.036987621684567075im -0.039103610294882005 + 0.02193247532934662im … 0.007228697693430389 - 0.020404018828529276im -0.0018633602264759644 - 0.05291921387128872im; -0.14466238142691412 + 0.0981371432506269im 0.014147265381908712 + 0.021197951737658476im … 0.009816849311252158 - 0.07016024644397989im -0.14383342612878358 - 0.07626457723939144im;;; 0.01738404860962292 - 0.08053743986186203im -0.18509696164873807 - 0.038129875731693144im … -0.07274645660227541 - 0.0710757153090452im -0.023373208801491144 + 0.06491190798743615im; -0.16924883484715564 - 0.10203778402734232im -0.13974281244741543 + 0.12961413912523773im … -0.04342216710982906 + 0.010778335157179162im 0.04633705103545967 - 0.05871253496691067im; … ; -0.07976726604846128 + 0.023570898250657873im -0.009764402354513662 + 0.0047238129057202635im … 0.07874412491371219 - 0.06281637537202008im -0.005589561184200103 - 0.06733060515768789im; 0.001696149119638347 + 0.07667553161941823im -0.030908997144421576 - 0.06819567000883461im … 0.015178426369011455 - 0.11020740905869071im -0.10629603346800257 + 0.010013927078989765im;;; -0.0823032155934493 - 0.08465458151767505im -0.08098634183640932 + 0.07709569241965022im … 0.03020461230050713 + 0.006905976103975503im 0.09851181425546063 - 0.0512340170504342im; -0.12693246385949808 + 0.012637357050897143im 0.07299393537075775 + 0.061516992533781796im … 0.07685959116537215 + 0.0069908107159708036im -0.0066115427254364555 - 0.1353884569903142im; … ; -0.016160803667667308 + 0.03935679222741586im 0.009787828842569499 - 0.001597563943522104im … 0.03250556668758925 - 0.07284150514940294im -0.02586675244983736 - 0.02698923945022783im; 0.050500419842231616 - 0.02436576581190758im -0.07584660109559344 - 0.024903757500283615im … 0.018461178051411224 - 0.014891862830926313im 0.026253250673762787 + 0.015299603469389203im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872403 -11.100308396742248 … -8.289845772412352 -11.10030839674231; -11.100308396742248 -9.130057825947707 … -9.130057795896414 -11.100308356759273; … ; -8.289845772412352 -9.130057795896414 … -4.149589921643233 -6.287956198199207; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577288;;; -11.10030839674225 -9.130057825947706 … -9.130057795896416 -11.100308356759273; -9.130057825947707 -6.9031594819820965 … -9.130057827297389 -10.053883826552033; … ; -9.130057795896414 -9.130057827297389 … -5.29435366921432 -7.547399206521541; -11.100308356759271 -10.053883826552031 … -7.547399206521542 -10.053883826552138;;; -8.28984577241265 -6.307621931516685 … -8.289845781011605 -9.111848193525956; -6.307621931516687 -4.516655665815728 … -7.547399237611373 -7.547399206521773; … ; -8.289845781011604 -7.547399237611372 … -5.768969083581148 -7.547399237611444; -9.111848193525955 -7.5473992065217725 … -7.547399237611445 -9.111848224927193;;; … ;;; -5.301031718249746 -6.3076219557888935 … -2.549703573276004 -3.8495821793877907; -6.307621955788894 -6.903159495208925 … -3.3290606985462405 -4.878419358630605; … ; -2.549703573276003 -3.329060698546241 … -1.256798470902507 -1.8141947460410714; -3.84958217938779 -4.878419358630607 … -1.814194746041071 -2.7147673353226125;;; -8.289845772412354 -9.130057795896414 … -4.1495899216432335 -6.287956198199206; -9.130057795896416 -9.130057827297387 … -5.294353669214319 -7.54739920652154; … ; -4.1495899216432335 -5.29435366921432 … -1.9094492399153231 -2.8946123678522584; -6.287956198199207 -7.547399206521541 … -2.8946123678522575 -4.485542759371974;;; -11.100308396742308 -11.100308356759273 … -6.287956198199208 -9.111848223577285; -11.100308356759271 -10.053883826552031 … -7.5473992065215425 -10.053883826552138; … ; -6.287956198199206 -7.5473992065215425 … -2.8946123678522575 -4.485542759371975; -9.111848223577287 -10.053883826552136 … -4.485542759371976 -6.871104500135127]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03869084933299569 - 0.04261188524262596im 0.011693367819041284 - 0.010947241177370625im … 0.06590713446338967 - 0.0551235023236662im 0.01290527689143102 - 0.09089406970643774im; 0.025895229798138884 - 0.011504146360238195im 0.0292267146013374 - 0.09289407642709353im … 0.05191783055320871 - 0.01835434099966424im -0.022172343836256818 - 0.06189520140274109im; … ; 0.05923824962928056 + 0.005364952926055629im 0.014566869855602751 - 0.05109178415062479im … 0.0005185170124537919 + 0.044059040267565im 0.02475408621834798 + 0.0410021328221374im; 0.004520866271260833 - 0.07766644566560002im -0.056245738218982114 - 0.027361402863343272im … 0.10747954233346818 + 0.004123896632051374im 0.07391377339795813 - 0.0669927286129832im;;; 0.006739511589668894 + 0.020516422348537948im 0.031427750486387546 - 0.025124333081835093im … -0.03975713530556173 + 0.022250620976528447im -0.011351300286389782 + 0.035346931839921526im; 0.052954064536143625 - 0.06652642030035502im 0.05288126682317752 - 0.08982480720208696im … 0.035499405133384176 + 0.03432630538201644im 0.04090311864441848 - 0.005247746159164499im; … ; -0.0338143149311861 - 0.07826330259486541im -0.0844762109363353 - 0.01638721390259333im … 0.05763268205705567 + 0.048597246712061976im 0.037403290869610785 - 0.039050857991860935im; -0.09457949394752282 - 0.008325942557252164im -0.03977329365772414 + 0.06713540099999382im … 0.02520729290888566 - 0.05810802575501974im -0.07001259574288754 - 0.049851400020381284im;;; 0.046377703061654285 - 0.02233419951901379im 0.003421849161553317 - 0.09340237312702461im … -0.03913803713799718 + 0.11935479311687343im 0.03723222901370851 + 0.08474273557624598im; 0.008132348815777402 - 0.05836018969695323im -0.01793357196867569 - 0.0931965692246492im … 0.023625279019137666 + 0.058388597538859im 0.017911602550538266 - 0.007131095450958167im; … ; -0.10411615402191284 + 0.027427341859430344im -0.021082033791066393 + 0.07922054775349596im … 0.022258113937070785 - 0.014351256523161202im -0.06627142774038547 - 0.04058638302888433im; -0.010919917521912981 + 0.10404725031032655im 0.06310057811938585 + 0.009072326932089432im … -0.08203990182420613 + 0.017523791242791673im -0.09834237504966051 + 0.09317966245493212im;;; … ;;; 0.01577640393323041 + 0.1006972853457886im -0.008559363246384899 - 0.08658293697193485im … -0.05307403518191974 - 0.10754732888685689im -0.17914560605346225 + 0.060272807018787594im; 0.025934783473758938 - 0.07836949429716784im -0.11951389573177307 - 0.05837667490511285im … -0.07703132055163303 - 0.05592616776904747im -0.018155133033094142 + 0.06426800645941275im; … ; -0.1001470256008176 - 0.036987621684567075im -0.039103610294882005 + 0.02193247532934662im … 0.007228697693430389 - 0.020404018828529276im -0.0018633602264759644 - 0.05291921387128872im; -0.14466238142691412 + 0.0981371432506269im 0.014147265381908712 + 0.021197951737658476im … 0.009816849311252158 - 0.07016024644397989im -0.14383342612878358 - 0.07626457723939144im;;; 0.01738404860962292 - 0.08053743986186203im -0.18509696164873807 - 0.038129875731693144im … -0.07274645660227541 - 0.0710757153090452im -0.023373208801491144 + 0.06491190798743615im; -0.16924883484715564 - 0.10203778402734232im -0.13974281244741543 + 0.12961413912523773im … -0.04342216710982906 + 0.010778335157179162im 0.04633705103545967 - 0.05871253496691067im; … ; -0.07976726604846128 + 0.023570898250657873im -0.009764402354513662 + 0.0047238129057202635im … 0.07874412491371219 - 0.06281637537202008im -0.005589561184200103 - 0.06733060515768789im; 0.001696149119638347 + 0.07667553161941823im -0.030908997144421576 - 0.06819567000883461im … 0.015178426369011455 - 0.11020740905869071im -0.10629603346800257 + 0.010013927078989765im;;; -0.0823032155934493 - 0.08465458151767505im -0.08098634183640932 + 0.07709569241965022im … 0.03020461230050713 + 0.006905976103975503im 0.09851181425546063 - 0.0512340170504342im; -0.12693246385949808 + 0.012637357050897143im 0.07299393537075775 + 0.061516992533781796im … 0.07685959116537215 + 0.0069908107159708036im -0.0066115427254364555 - 0.1353884569903142im; … ; -0.016160803667667308 + 0.03935679222741586im 0.009787828842569499 - 0.001597563943522104im … 0.03250556668758925 - 0.07284150514940294im -0.02586675244983736 - 0.02698923945022783im; 0.050500419842231616 - 0.02436576581190758im -0.07584660109559344 - 0.024903757500283615im … 0.018461178051411224 - 0.014891862830926313im 0.026253250673762787 + 0.015299603469389203im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.58978454288479e-5 0.0011262712728397817 … 0.006697037550093361 0.0011262712728397951; 0.0011262712728397884 0.0052743344573821715 … 0.005274334457382204 0.0011262712728397968; … ; 0.006697037550093352 0.00527433445738219 … 0.023244754191069267 0.012258986825257466; 0.0011262712728397986 0.0011262712728397817 … 0.01225898682525747 0.003770008629904742;;; 0.0011262712728397893 0.005274334457382171 … 0.005274334457382207 0.0011262712728397862; 0.005274334457382178 0.014620065304740167 … 0.0052743344573822045 0.0025880808748580454; … ; 0.005274334457382197 0.00527433445738219 … 0.0181076866461576 0.008922003044760032; 0.0011262712728397886 0.0025880808748580315 … 0.008922003044760032 0.002588080874858054;;; 0.006697037550093322 0.016412109101619173 … 0.006697037550093357 0.0037700086299047235; 0.016412109101619176 0.03127783931595299 … 0.008922003044760018 0.008922003044759987; … ; 0.006697037550093348 0.008922003044760004 … 0.016476756359464648 0.008922003044760029; 0.003770008629904727 0.00892200304475998 … 0.008922003044760027 0.0037700086299047356;;; … ;;; 0.019853839853419153 0.016412109101619197 … 0.037156673635681 0.027190800686596545; 0.0164121091016192 0.014620065304740177 … 0.032301272126455886 0.02232210093173095; … ; 0.037156673635680995 0.03230127212645587 … 0.04629698070145144 0.04263658273144901; 0.027190800686596538 0.02232210093173094 … 0.04263658273144902 0.03477222914201253;;; 0.00669703755009333 0.0052743344573821715 … 0.023244754191069247 0.012258986825257433; 0.005274334457382177 0.0052743344573821715 … 0.018107686646157573 0.008922003044759997; … ; 0.023244754191069243 0.018107686646157563 … 0.040371110335589 0.03149160381140401; 0.012258986825257433 0.00892200304475999 … 0.03149160381140401 0.0200471634327545;;; 0.001126271272839791 0.0011262712728397858 … 0.012258986825257457 0.003770008629904731; 0.0011262712728397925 0.0025880808748580376 … 0.008922003044760022 0.0025880808748580484; … ; 0.01225898682525745 0.008922003044760011 … 0.031491603811404034 0.02004716343275452; 0.003770008629904732 0.002588080874858035 … 0.02004716343275452 0.008952603496781661;;;;], eigenvalues = [[-0.17836835653965827, 0.26249194499099054, 0.2624919449909906, 0.2624919449909907, 0.35469214816752076, 0.3546921481675209, 0.3546921481677122], [-0.12755037617953424, 0.06475320594650769, 0.22545166517373244, 0.22545166517373255, 0.3219776496111727, 0.3892227690846929, 0.3892227690846925], [-0.10818729216542768, 0.07755003473396821, 0.17278328011434863, 0.17278328011434854, 0.2843518536197572, 0.3305476484330692, 0.526723242638571], [-0.05777325374473567, 0.012724782205144343, 0.09766073750106001, 0.18417825332934865, 0.3152284179598495, 0.4720312182178953, 0.4979135176025867]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930537397, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.9142640869051887 + 0.25656357228245835im -7.706520812093897e-15 - 3.1816710962253732e-15im … 1.1905193504922471e-11 + 2.2946023618872046e-11im 1.119321902574706e-8 + 2.1755311939302716e-8im; -0.048659828559120884 + 0.08662342799144471im -0.2562102082869282 - 0.34767476592476576im … -0.43954690339113306 - 0.15140431788955178im -0.2375537229203518 - 0.03186539996568293im; … ; 0.011320765123437505 - 0.00317686758415786im 0.00985711163181938 - 0.028823665877629686im … -0.0045670000194350845 + 0.05801837765561816im 0.052010897805444455 + 0.050154415941478195im; -0.04865982855911823 + 0.08662342799149696im 0.1339700276811056 + 0.09837564878150232im … -0.12248919084655834 + 0.21983357243695154im 0.3684607664861862 - 0.04287758729073327im], [0.8548895921256139 - 0.3432817819466536im -0.18007580011271515 + 0.09377759802048172im … -2.3073933082214922e-11 + 2.2694772175798744e-11im 9.039144383105931e-11 - 7.340612791625485e-11im; 0.024563292693587164 - 0.05752655368594885im 0.0027078069891357825 - 0.008592787885380659im … -1.7439264598817728e-11 + 8.33336089617759e-11im 4.9062661772148746e-11 + 9.635780137918653e-12im; … ; -0.0045863271510394755 + 0.0018416443146553171im 0.07498054206482639 - 0.0390474185243335im … 0.009051873870502884 - 0.04490092706860647im 0.05443010397704293 - 0.07777009840826227im; 0.04591049828335432 - 0.10752112011985286im -0.030091636383152078 + 0.09549094510798381im … -0.11209052477254335 - 0.1686961640585623im -0.0729780004622918 - 0.41335512846157935im], [0.5520294348922903 - 0.7428830092147493im 2.0601751232625733e-14 - 1.994199296847002e-14im … -2.2863608116769828e-11 + 3.1706350991137884e-11im 5.562789222677309e-9 - 6.467553684329992e-9im; -0.009993039270167753 - 0.06780124999668126im -0.014144967858559796 + 0.05024346450258632im … -0.002242196269884766 + 0.025863763059650477im -0.005696000624740292 - 0.004635042284995343im; … ; -0.006319259448890328 + 0.008504022029761344im 8.201777584203711e-15 - 5.531372161263957e-15im … -4.9516264858868185e-11 - 6.837261569244186e-12im -0.05151275058569101 + 0.016816541961020323im; -0.02336508685907949 - 0.1585285569781796im 0.07946666551120701 - 0.2822686221472954im … -0.032137303166841706 + 0.37070421757566824im -0.07261823228944596 + 0.13767151419138093im], [0.7235018292331387 + 0.33980063556354884im 5.499166962171785e-15 - 4.526772048871127e-15im … 0.06981616386136788 + 0.16768562452595673im -3.1688543803645926e-7 - 3.5116255204830915e-6im; 0.36859301334306 - 0.13300973512277756im 0.03090446899063036 - 0.6200017181160367im … -0.1682661252548776 - 0.0693383192266612im 2.3858884272003313e-6 + 1.2718479882229955e-6im; … ; -0.011994184417435416 - 0.00563320135959609im -0.0001882335493150058 + 0.00017035921352065501im … -0.0050157406301657124 - 0.012046912942803805im 0.038679130728496276 - 0.025080194877442997im; 0.06310820981650941 - 0.022773101952283825im -0.00026451814903316487 + 0.0053067311044180405im … -0.13256596864534856 - 0.05463244698682506im 0.09830538551549808 - 0.46086137090579643im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653965827, 0.26249194499099054, 0.2624919449909906, 0.2624919449909907, 0.35469214816752076, 0.3546921481675209, 0.3546921481677122], [-0.12755037617953424, 0.06475320594650769, 0.22545166517373244, 0.22545166517373255, 0.3219776496111727, 0.3892227690846929, 0.3892227690846925], [-0.10818729216542768, 0.07755003473396821, 0.17278328011434863, 0.17278328011434854, 0.2843518536197572, 0.3305476484330692, 0.526723242638571], [-0.05777325374473567, 0.012724782205144343, 0.09766073750106001, 0.18417825332934865, 0.3152284179598495, 0.4720312182178953, 0.4979135176025867]], X = [[-0.9142640869051887 + 0.25656357228245835im -7.706520812093897e-15 - 3.1816710962253732e-15im … 1.1905193504922471e-11 + 2.2946023618872046e-11im 1.119321902574706e-8 + 2.1755311939302716e-8im; -0.048659828559120884 + 0.08662342799144471im -0.2562102082869282 - 0.34767476592476576im … -0.43954690339113306 - 0.15140431788955178im -0.2375537229203518 - 0.03186539996568293im; … ; 0.011320765123437505 - 0.00317686758415786im 0.00985711163181938 - 0.028823665877629686im … -0.0045670000194350845 + 0.05801837765561816im 0.052010897805444455 + 0.050154415941478195im; -0.04865982855911823 + 0.08662342799149696im 0.1339700276811056 + 0.09837564878150232im … -0.12248919084655834 + 0.21983357243695154im 0.3684607664861862 - 0.04287758729073327im], [0.8548895921256139 - 0.3432817819466536im -0.18007580011271515 + 0.09377759802048172im … -2.3073933082214922e-11 + 2.2694772175798744e-11im 9.039144383105931e-11 - 7.340612791625485e-11im; 0.024563292693587164 - 0.05752655368594885im 0.0027078069891357825 - 0.008592787885380659im … -1.7439264598817728e-11 + 8.33336089617759e-11im 4.9062661772148746e-11 + 9.635780137918653e-12im; … ; -0.0045863271510394755 + 0.0018416443146553171im 0.07498054206482639 - 0.0390474185243335im … 0.009051873870502884 - 0.04490092706860647im 0.05443010397704293 - 0.07777009840826227im; 0.04591049828335432 - 0.10752112011985286im -0.030091636383152078 + 0.09549094510798381im … -0.11209052477254335 - 0.1686961640585623im -0.0729780004622918 - 0.41335512846157935im], [0.5520294348922903 - 0.7428830092147493im 2.0601751232625733e-14 - 1.994199296847002e-14im … -2.2863608116769828e-11 + 3.1706350991137884e-11im 5.562789222677309e-9 - 6.467553684329992e-9im; -0.009993039270167753 - 0.06780124999668126im -0.014144967858559796 + 0.05024346450258632im … -0.002242196269884766 + 0.025863763059650477im -0.005696000624740292 - 0.004635042284995343im; … ; -0.006319259448890328 + 0.008504022029761344im 8.201777584203711e-15 - 5.531372161263957e-15im … -4.9516264858868185e-11 - 6.837261569244186e-12im -0.05151275058569101 + 0.016816541961020323im; -0.02336508685907949 - 0.1585285569781796im 0.07946666551120701 - 0.2822686221472954im … -0.032137303166841706 + 0.37070421757566824im -0.07261823228944596 + 0.13767151419138093im], [0.7235018292331387 + 0.33980063556354884im 5.499166962171785e-15 - 4.526772048871127e-15im … 0.06981616386136788 + 0.16768562452595673im -3.1688543803645926e-7 - 3.5116255204830915e-6im; 0.36859301334306 - 0.13300973512277756im 0.03090446899063036 - 0.6200017181160367im … -0.1682661252548776 - 0.0693383192266612im 2.3858884272003313e-6 + 1.2718479882229955e-6im; … ; -0.011994184417435416 - 0.00563320135959609im -0.0001882335493150058 + 0.00017035921352065501im … -0.0050157406301657124 - 0.012046912942803805im 0.038679130728496276 - 0.025080194877442997im; 0.06310820981650941 - 0.022773101952283825im -0.00026451814903316487 + 0.0053067311044180405im … -0.13256596864534856 - 0.05463244698682506im 0.09830538551549808 - 0.46086137090579643im]], residual_norms = [[1.3528278249360603e-12, 4.774901606919383e-13, 1.9180085767416056e-12, 1.750343592601549e-12, 3.2034815002607047e-10, 6.707737962721166e-10, 6.350368370000184e-7], [2.5284599890139702e-12, 2.7719788977071703e-12, 8.343984686903717e-13, 8.307621417003606e-13, 1.6498798965826187e-10, 3.1526656551084535e-9, 2.8085768170238957e-9], [1.0033530339676535e-12, 1.0209988436057282e-12, 1.7480679891432293e-12, 1.3490316234695504e-12, 3.343348411111229e-11, 9.689445932614922e-10, 3.409661114838037e-7], [9.923306944215865e-13, 6.326845821550984e-13, 6.354796455282213e-13, 2.2418924726491407e-12, 2.3111244724461723e-10, 7.6918660850638e-6, 4.749197821980253e-6]], n_iter = [5, 4, 3, 3], converged = 1, n_matvec = 127)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069842630411798, 0.02760591003811038, 0.002309353201743048, 0.000257944388122526, 9.343572337626899e-6, 8.977320887784723e-7, 3.511213657805484e-8, 2.2572956892272637e-9, 1.2274337288868401e-10, 1.8353074218844632e-11], history_Etot = [-7.905263927650396, -7.910544366910955, -7.910593454975748, -7.910594393277369, -7.9105943964489, -7.910594396488447, -7.910594396488505, -7.910594396488505, -7.9105943964885075, -7.910594396488506], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000a2a59ecb)