Hubbard correction (DFT+U)

In this example, we'll plot the DOS and projected DOS of Nickel Oxide with and without the Hubbard term correction.

using DFTK
using PseudoPotentialData
using Unitful
using UnitfulAtomic
using Plots

Define the geometry and pseudopotential

a = 7.9  # Nickel Oxide lattice constant in Bohr
lattice = a * [[ 1.0  0.5  0.5];
               [ 0.5  1.0  0.5];
               [ 0.5  0.5  1.0]]
pseudopotentials = PseudoFamily("dojo.nc.sr.pbe.v0_4_1.standard.upf")
Ni = ElementPsp(:Ni, pseudopotentials)
O  = ElementPsp(:O, pseudopotentials)
atoms = [Ni, O, Ni, O]
positions = [zeros(3), ones(3) / 4, ones(3) / 2, ones(3) * 3 / 4]
magnetic_moments = [2, 0, -1, 0]
4-element Vector{Int64}:
  2
  0
 -1
  0

First, we run an SCF and band computation without the Hubbard term

model = model_DFT(lattice, atoms, positions; temperature=5e-3,
                  functionals=PBE(), magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments))
bands = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands.εF > 0, bands.eigenvalues[1])
band_gap = bands.eigenvalues[1][lowest_unocc_band] - bands.eigenvalues[1][lowest_unocc_band-1]
0.082192885579363

Then we plot the DOS and the PDOS for the relevant 3D (pseudo)atomic projector

εF = bands.εF
width = 5.0u"eV"
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands; εrange, colors=[:red, :red])
plot_pdos(bands; p, iatom=1, label="3D", colors=[:yellow, :orange], εrange)
Example block output

To perform and Hubbard computation, we have to define the Hubbard manifold and associated constant.

In DFTK there are a few ways to construct the OrbitalManifold. Here, we will apply the Hubbard correction on the 3D orbital of all nickel atoms. To select all nickel atoms, we can:

  • Pass the Ni element directly.
  • Pass the :Ni symbol.
  • Pass the list of atom indices, here [1, 3].

To select the orbitals, it is recommended to use their label, such as "3D" for PseudoDojo pseudopotentials.

Note that "manifold" is the standard term used in the literature for the set of atomic orbitals used to compute the Hubbard correction, but it is not meant in the mathematical sense.

U = 10u"eV"
# Alternative:
# manifold = OrbitalManifold(:Ni, "3D")
# Alternative:
# manifold = OrbitalManifold([1, 3], "3D")
manifold = OrbitalManifold(Ni, "3D")
OrbitalManifold(Ni, "3D")

Run SCF with a DFT+U setup, notice the extra_terms keyword argument, setting up the Hubbard +U term.

model = model_DFT(lattice, atoms, positions; extra_terms=[Hubbard(manifold, U)],
                  functionals=PBE(), temperature=5e-3, magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments));
┌ Warning: Negative ρcore detected: -0.0006182370306135084
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/terms/xc.jl:39
n     Energy            log10(ΔE)   log10(Δρ)   Magnet   |Magn|   Diag   Δtime
---   ---------------   ---------   ---------   ------   ------   ----   ------
  1   -361.3855800657                    0.07    1.334    3.441    6.8    3.81s
  2   -363.2388920759        0.27       -0.21    0.014    3.625    3.2    4.95s
  3   -363.3509372226       -0.95       -0.58    0.000    3.727    3.2    2.94s
  4   -363.3890226901       -1.42       -1.18    0.000    3.717    2.6    2.46s
  5   -363.3959840285       -2.16       -1.67    0.000    3.681    2.0    2.27s
  6   -363.3973187580       -2.87       -2.04    0.000    3.656    1.5    1.95s
  7   -363.3976110674       -3.53       -2.28    0.000    3.648    2.4    3.81s
  8   -363.3976915666       -4.09       -2.64    0.000    3.647    1.2    1.98s
  9   -363.3977068388       -4.82       -2.98    0.000    3.649    2.1    2.23s
 10   -363.3977059365   +   -6.04       -2.90   -0.000    3.650    2.1    2.01s
 11   -363.3977093110       -5.47       -3.20    0.000    3.648    2.0    2.13s
 12   -363.3977081121   +   -5.92       -3.08    0.000    3.648    2.1    2.19s
 13   -363.3977089829       -6.06       -3.11   -0.000    3.648    2.1    2.24s
 14   -363.3977086162   +   -6.44       -3.00   -0.000    3.649    1.1    1.81s
 15   -363.3977089676       -6.45       -2.93    0.000    3.649    1.0    1.79s
 16   -363.3977092547       -6.54       -3.06   -0.000    3.649    1.0    1.81s
 17   -363.3977094786       -6.65       -3.07   -0.000    3.649    1.0    1.81s
 18   -363.3977096213       -6.85       -3.08    0.000    3.649    1.0    1.79s
 19   -363.3977097042       -7.08       -3.09    0.000    3.649    1.0    1.79s
 20   -363.3977092213   +   -6.32       -3.01   -0.000    3.649    1.0    1.79s
 21   -363.3977089449   +   -6.56       -2.97   -0.000    3.649    1.0    1.79s
 22   -363.3977097080       -6.12       -3.18    0.000    3.649    1.0    1.80s
 23   -363.3977098312       -6.91       -3.29    0.000    3.649    1.0    1.79s
 24   -363.3977099184       -7.06       -3.35    0.000    3.649    1.0    1.70s
 25   -363.3977100101       -7.04       -4.02    0.000    3.648    1.1    1.72s
 26   -363.3977100156       -8.26       -4.10    0.000    3.648    2.5    2.02s
 27   -363.3977100127   +   -8.54       -4.20    0.000    3.648    1.2    1.77s
 28   -363.3977100149       -8.67       -4.51    0.000    3.648    1.0    1.70s
 29   -363.3977100159       -8.99       -4.57    0.000    3.648    1.0    1.71s
 30   -363.3977100153   +   -9.23       -4.50    0.000    3.648    1.0    1.69s
 31   -363.3977100128   +   -8.60       -4.39    0.000    3.648    1.1    1.72s
 32   -363.3977100161       -8.48       -4.54    0.000    3.648    1.1    1.72s
 33   -363.3977100167       -9.21       -4.51    0.000    3.648    1.0    3.21s
 34   -363.3977100178       -8.98       -5.15    0.000    3.648    1.4    1.77s
 35   -363.3977100178      -11.00       -5.18    0.000    3.648    2.6    2.07s
 36   -363.3977100178      -10.22       -5.51    0.000    3.648    1.0    1.70s
 37   -363.3977100178      -10.61       -5.93    0.000    3.648    2.0    2.00s
 38   -363.3977100179      -11.43       -6.49    0.000    3.648    2.1    2.10s

Run band computation

bands_hub = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands_hub.εF > 0, bands_hub.eigenvalues[1])
band_gap = bands_hub.eigenvalues[1][lowest_unocc_band] - bands_hub.eigenvalues[1][lowest_unocc_band-1]
0.11667613071457816

With the electron localization introduced by the Hubbard term, the band gap has now opened, reflecting the experimental insulating behaviour of Nickel Oxide.

εF = bands_hub.εF
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands_hub; p, colors=[:blue, :blue], εrange)
plot_pdos(bands_hub; p, iatom=1, label="3D", colors=[:green, :purple], εrange)
Example block output