Comparison of DFT solvers

We compare four different approaches for solving the DFT minimisation problem, namely a density-based SCF, a potential-based SCF, direct minimisation and Newton.

First we setup our problem

using AtomsBuilder
using DFTK
using LinearAlgebra
using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.pbesol.v0_4_1.oncvpsp3.standard.upf")
model = model_DFT(bulk(:Si); functionals=PBEsol(), pseudopotentials)
basis = PlaneWaveBasis(model; Ecut=5, kgrid=[3, 3, 3])

# Convergence we desire in the density
tol = 1e-6
1.0e-6

Density-based self-consistent field

scfres_scf = self_consistent_field(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397823823660                   -0.90    5.8   36.3ms
  2   -8.400250696577       -2.61       -1.74    1.0   26.9ms
  3   -8.400398671478       -3.83       -2.93    1.2   33.1ms
  4   -8.400428650524       -4.52       -2.91    3.2   26.3ms
  5   -8.400428737663       -7.06       -2.96    1.0   20.0ms
  6   -8.400429016894       -6.55       -4.91    1.0   19.7ms
  7   -8.400429023880       -8.16       -4.36    3.5   33.5ms
  8   -8.400429024380       -9.30       -4.89    2.0   23.4ms
  9   -8.400429024419      -10.40       -6.26    1.0   20.1ms

Potential-based SCF

scfres_scfv = DFTK.scf_potential_mixing(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   α      Diag   Δtime
---   ---------------   ---------   ---------   ----   ----   ------
  1   -8.397767475238                   -0.90           5.2   33.5ms
  2   -8.400381673860       -2.58       -1.79   0.80    2.0   19.2ms
  3   -8.400422852281       -4.39       -3.02   0.80    1.0   16.2ms
  4   -8.400428967103       -5.21       -3.43   0.80    2.5   20.9ms
  5   -8.400429019821       -7.28       -4.59   0.80    1.0   16.4ms
  6   -8.400429024393       -8.34       -5.71   0.80    2.8   21.2ms
  7   -8.400429024420      -10.56       -6.09   0.80    2.8   29.2ms

Direct minimization

scfres_dm = direct_minimization(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   +0.645081890766                   -1.08   53.8ms
  2   -1.582445044509        0.35       -0.67   29.7ms
  3   -3.875017961513        0.36       -0.39   45.6ms
  4   -4.774994147164       -0.05       -0.40   40.3ms
  5   -6.794104993463        0.31       -0.53   40.1ms
  6   -7.661148785690       -0.06       -0.80   46.5ms
  7   -7.933006307087       -0.57       -1.32   30.4ms
  8   -8.159287645716       -0.65       -1.76   29.7ms
  9   -8.218646751820       -1.23       -1.85   29.8ms
 10   -8.271935761035       -1.27       -1.95   35.0ms
 11   -8.309388835252       -1.43       -1.95   30.0ms
 12   -8.341101171990       -1.50       -2.13   29.7ms
 13   -8.369868627760       -1.54       -2.41   30.8ms
 14   -8.389404214142       -1.71       -2.26   34.6ms
 15   -8.396948094341       -2.12       -2.70   30.0ms
 16   -8.398939137135       -2.70       -2.76   29.6ms
 17   -8.399894246026       -3.02       -3.04   30.0ms
 18   -8.400147761804       -3.60       -3.13   34.7ms
 19   -8.400329791378       -3.74       -3.19   32.9ms
 20   -8.400395016582       -4.19       -4.12   33.6ms
 21   -8.400413509306       -4.73       -3.78   30.1ms
 22   -8.400421360320       -5.11       -4.38   34.8ms
 23   -8.400423733725       -5.62       -4.16   30.0ms
 24   -8.400427369677       -5.44       -4.56   29.8ms
 25   -8.400428213141       -6.07       -4.52   29.4ms
 26   -8.400428728278       -6.29       -4.74   34.7ms
 27   -8.400428825966       -7.01       -4.66   29.9ms
 28   -8.400428917051       -7.04       -5.41   29.9ms
 29   -8.400428967768       -7.29       -4.93   29.5ms
 30   -8.400429002840       -7.46       -5.51   34.6ms
 31   -8.400429013191       -7.99       -5.40   29.8ms
 32   -8.400429020025       -8.17       -5.96   29.8ms
 33   -8.400429022585       -8.59       -5.62   29.5ms
 34   -8.400429023496       -9.04       -6.15   36.7ms

Newton algorithm

Start not too far from the solution to ensure convergence: We run first a very crude SCF to get close and then switch to Newton.

scfres_start = self_consistent_field(basis; tol=0.5);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397819474771                   -0.90    5.2   27.2ms

Remove the virtual orbitals (which Newton cannot treat yet)

ψ = DFTK.select_occupied_orbitals(basis, scfres_start.ψ, scfres_start.occupation).ψ
scfres_newton = newton(basis, ψ; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   -8.400428845121                   -1.78    559ms
  2   -8.400429024420       -6.75       -4.02    362ms
  3   -8.400429024420      -14.45       -7.80    113ms

Comparison of results

println("|ρ_newton - ρ_scf|  = ", norm(scfres_newton.ρ - scfres_scf.ρ))
println("|ρ_newton - ρ_scfv| = ", norm(scfres_newton.ρ - scfres_scfv.ρ))
println("|ρ_newton - ρ_dm|   = ", norm(scfres_newton.ρ - scfres_dm.ρ))
|ρ_newton - ρ_scf|  = 9.77658025917077e-7
|ρ_newton - ρ_scfv| = 3.364858177986376e-7
|ρ_newton - ρ_dm|   = 2.632320403273696e-6