Analysing SCF convergence
The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is
\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]
where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing
, LdosMixing
) and $\varepsilon^\dagger$ is the dielectric operator.
We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number
\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]
which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.
For our investigation we consider a crude aluminium setup:
using ASEconvert
using DFTK
using LazyArtifacts
ase_Al = ase.build.bulk("Al"; cubic=true) * pytuple((4, 1, 1))
system_Al = attach_psp(pyconvert(AbstractSystem, ase_Al);
Al=artifact"pd_nc_sr_pbe_standard_0.4.1_upf/Al.upf")
FlexibleSystem(Al₁₆, periodic = TTT):
bounding_box : [ 16.2 0 0;
0 4.05 0;
0 0 4.05]u"Å"
.---------------------------------------.
/| |
* | |
|Al Al Al Al |
| | |
| .--Al--------Al--------Al--------Al-----.
|/ Al Al Al Al /
Al--------Al--------Al--------Al--------*
and we discretise:
model_Al = model_LDA(system_Al; temperature=1e-3, symmetries=false)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);
On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:
# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
# any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -35.98111978732 -0.86 11.0 349ms
2 -35.97466599050 + -2.19 -1.56 1.0 86.8ms
3 -18.88250354421 + 1.23 -0.45 6.0 206ms
4 -35.43700535480 1.22 -1.04 8.0 200ms
5 -35.88270863551 -0.35 -1.39 4.0 142ms
6 -35.83250179931 + -1.30 -1.46 3.0 124ms
7 -35.86609669551 -1.47 -1.51 4.0 146ms
8 -35.98898969440 -0.91 -2.23 2.0 109ms
9 -35.98813983041 + -3.07 -2.12 4.0 159ms
10 -35.98760744648 + -3.27 -2.08 3.0 128ms
11 -35.98938708140 -2.75 -2.56 2.0 122ms
12 -35.98952696663 -3.85 -2.62 2.0 107ms
13 -35.98962263055 -4.02 -3.34 1.0 112ms
14 -35.98962120010 + -5.84 -3.29 4.0 140ms
15 -35.98953946748 + -4.09 -3.05 3.0 141ms
16 -35.98962544654 -4.07 -3.62 4.0 141ms
17 -35.98963153045 -5.22 -4.13 2.0 112ms
18 -35.98963084184 + -6.16 -3.93 3.0 139ms
19 -35.98963128650 -6.35 -4.12 3.0 137ms
20 -35.98963193096 -6.19 -4.59 2.0 103ms
21 -35.98963190783 + -7.64 -4.48 4.0 204ms
22 -35.98963197605 -7.17 -4.96 2.0 123ms
23 -35.98963197849 -8.61 -4.89 3.0 168ms
24 -35.98963198582 -8.14 -5.65 2.0 108ms
25 -35.98963198534 + -9.32 -5.47 3.0 145ms
26 -35.98963198598 -9.19 -5.64 2.0 111ms
27 -35.98963198573 + -9.60 -5.66 3.0 116ms
28 -35.98963198608 -9.45 -6.11 1.0 93.8ms
29 -35.98963198599 + -10.03 -5.97 3.0 169ms
30 -35.98963198609 -9.99 -6.24 3.0 130ms
31 -35.98963198613 -10.45 -6.75 3.0 119ms
32 -35.98963198613 -11.58 -6.98 3.0 138ms
33 -35.98963198613 -12.27 -7.23 2.0 107ms
34 -35.98963198613 -12.83 -7.62 2.0 110ms
35 -35.98963198613 + -12.85 -7.43 3.0 141ms
36 -35.98963198613 -12.97 -7.74 3.0 140ms
37 -35.98963198613 -13.55 -7.98 2.0 147ms
38 -35.98963198613 + -Inf -8.29 2.0 101ms
39 -35.98963198613 -13.85 -8.42 2.0 129ms
40 -35.98963198613 + -Inf -8.75 2.0 100ms
41 -35.98963198613 + -Inf -9.33 2.0 102ms
42 -35.98963198613 + -14.15 -8.94 4.0 166ms
43 -35.98963198613 -14.15 -9.21 4.0 149ms
44 -35.98963198613 + -Inf -9.53 3.0 118ms
45 -35.98963198613 + -Inf -9.88 1.0 120ms
46 -35.98963198613 + -Inf -9.98 2.0 129ms
47 -35.98963198613 + -14.15 -9.63 3.0 130ms
48 -35.98963198613 -14.15 -9.99 4.0 149ms
49 -35.98963198613 + -14.15 -10.33 3.0 120ms
50 -35.98963198613 + -14.15 -10.75 1.0 95.1ms
51 -35.98963198613 -13.85 -10.45 3.0 138ms
52 -35.98963198613 + -Inf -11.25 3.0 118ms
53 -35.98963198613 + -Inf -11.21 2.0 175ms
54 -35.98963198613 + -14.15 -11.19 5.0 143ms
55 -35.98963198613 + -Inf -11.50 2.0 108ms
56 -35.98963198613 -14.15 -11.12 4.0 149ms
57 -35.98963198613 + -13.85 -11.94 3.0 155ms
58 -35.98963198613 -13.85 -11.77 4.0 155ms
59 -35.98963198613 + -13.85 -11.54 3.0 131ms
60 -35.98963198613 + -Inf -12.16 4.0 194ms
while when using the Kerker preconditioner it is much faster:
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -35.98113248012 -0.86 12.0 366ms
2 -35.98740271198 -2.20 -1.34 1.0 90.5ms
3 -35.98680602319 + -3.22 -1.64 7.0 143ms
4 -35.98937728770 -2.59 -2.26 1.0 91.0ms
5 -35.98953268071 -3.81 -2.39 4.0 146ms
6 -35.98960474743 -4.14 -2.62 2.0 133ms
7 -35.98961595114 -4.95 -2.91 2.0 104ms
8 -35.98962702554 -4.96 -3.04 5.0 132ms
9 -35.98963039368 -5.47 -3.54 1.0 94.0ms
10 -35.98963185497 -5.84 -4.15 4.0 134ms
11 -35.98963191213 -7.24 -4.32 6.0 159ms
12 -35.98963186936 + -7.37 -4.35 5.0 136ms
13 -35.98963196608 -7.01 -4.83 2.0 107ms
14 -35.98963198553 -7.71 -5.34 3.0 174ms
15 -35.98963198609 -9.25 -5.76 8.0 148ms
16 -35.98963198608 + -10.98 -5.97 2.0 131ms
17 -35.98963198613 -10.29 -6.59 2.0 106ms
18 -35.98963198613 -12.18 -6.63 3.0 139ms
19 -35.98963198613 -12.72 -7.01 1.0 104ms
20 -35.98963198613 -12.81 -7.19 3.0 124ms
21 -35.98963198613 -13.45 -7.60 2.0 106ms
22 -35.98963198613 -13.67 -7.82 5.0 175ms
23 -35.98963198613 + -Inf -8.33 7.0 142ms
24 -35.98963198613 + -13.85 -8.69 3.0 142ms
25 -35.98963198613 -13.85 -9.10 2.0 113ms
26 -35.98963198613 + -Inf -9.30 4.0 150ms
27 -35.98963198613 + -14.15 -9.71 2.0 105ms
28 -35.98963198613 -14.15 -10.20 10.0 165ms
29 -35.98963198613 + -Inf -10.28 3.0 139ms
30 -35.98963198613 + -14.15 -10.64 2.0 137ms
31 -35.98963198613 -14.15 -10.83 3.0 135ms
32 -35.98963198613 + -13.85 -11.10 2.0 105ms
33 -35.98963198613 + -Inf -11.64 3.0 141ms
34 -35.98963198613 -14.15 -11.93 6.0 138ms
┌ Warning: Eigensolver not converged
│ n_iter =
│ 1-element Vector{Int64}:
│ 2
└ @ DFTK ~/work/DFTK.jl/DFTK.jl/src/scf/self_consistent_field.jl:76
35 -35.98963198613 -13.67 -12.07 2.0 167ms
Given this scfres_Al
we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:
# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)
# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
δV = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
χ0δV = apply_χ0(scfres_Al, δV)
δρ - χ0δV
end
epsilon (generic function with 1 method)
With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.
using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.38745216684851
The smallest eigenvalue is a bit more tricky to obtain, so we will just assume
λ_Simple_min = 0.952
0.952
This makes the condition number around 30:
cond_Simple = λ_Simple_max / λ_Simple_min
46.62547496517701
This does not sound large compared to the condition numbers you might know from linear systems.
However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).
Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:
using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1] # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
legend=false, clim=(-0.006, 0.006))
This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.
We repeat the exercise for the Kerker-preconditioned dielectric operator:
λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
randn(size(scfres_Al.ρ)), 3, :LM;
tol=1e-3, eager=true, verbosity=2)
mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1] # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
legend=false, clim=(-0.006, 0.006))
Clearly the charge-sloshing mode is no longer dominating.
The largest eigenvalue is now
maximum(real.(λ_Kerker))
4.6854589454726705
Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing
is used.
Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing
, however.
We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.
Takeaways:
- For metals the conditioning of the dielectric matrix increases steeply with system size.
- The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
- For insulating systems the best approach is to not use any mixing.
- The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).