Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73442476688                   -0.88   11.0    363ms
  2   -36.67539210808   +   -1.23       -1.51    1.0   91.8ms
  3   +20.44752390907   +    1.76       -0.19    7.0    228ms
  4   -36.69737662141        1.76       -1.33    6.0    231ms
  5   -36.70665540002       -2.03       -1.60    2.0    123ms
  6   -36.23154121737   +   -0.32       -1.20    3.0    136ms
  7   -36.65967129984       -0.37       -1.58    4.0    160ms
  8   -36.74144445821       -1.09       -2.25    2.0    107ms
  9   -36.74075217616   +   -3.16       -2.11    3.0    162ms
 10   -36.74181479063       -2.97       -2.31    2.0    115ms
 11   -36.74187096043       -4.25       -2.39    2.0    130ms
 12   -36.74228301357       -3.39       -2.77    2.0    111ms
 13   -36.74245145249       -3.77       -3.08    1.0    103ms
 14   -36.74246869452       -4.76       -3.06    3.0    141ms
 15   -36.74216152314   +   -3.51       -2.80    3.0    149ms
 16   -36.74246010708       -3.52       -3.34    3.0    142ms
 17   -36.74246058703       -6.32       -3.17    2.0    120ms
 18   -36.74246004584   +   -6.27       -3.38    2.0    121ms
 19   -36.74247666405       -4.78       -3.69    2.0    114ms
 20   -36.74247829766       -5.79       -3.85    3.0    142ms
 21   -36.74248046191       -5.66       -4.02    2.0    132ms
 22   -36.74248000542   +   -6.34       -4.02    2.0    122ms
 23   -36.74248061779       -6.21       -4.38    2.0    108ms
 24   -36.74248065167       -7.47       -4.57    2.0    125ms
 25   -36.74248066525       -7.87       -4.73    1.0   97.5ms
 26   -36.74248066868       -8.46       -5.13    1.0   96.8ms
 27   -36.74248066811   +   -9.24       -5.16    2.0    137ms
 28   -36.74248065558   +   -7.90       -4.93    3.0    131ms
 29   -36.74248067225       -7.78       -5.50    3.0    137ms
 30   -36.74248066735   +   -8.31       -5.16    3.0    151ms
 31   -36.74248067254       -8.28       -5.66    3.0    147ms
 32   -36.74248066126   +   -7.95       -5.01    3.0    149ms
 33   -36.74248067249       -7.95       -5.80    3.0    156ms
 34   -36.74248067259       -9.98       -5.92    2.0    115ms
 35   -36.74248067264      -10.27       -6.04    2.0    118ms
 36   -36.74248067268      -10.48       -6.56    2.0    105ms
 37   -36.74248067268      -11.50       -6.83    3.0    146ms
 38   -36.74248067268      -12.03       -6.92    2.0    117ms
 39   -36.74248067268      -12.46       -7.32    1.0    104ms
 40   -36.74248067268   +  -11.38       -6.73    3.0    149ms
 41   -36.74248067268      -11.40       -7.29    3.0    146ms
 42   -36.74248067268      -12.56       -7.99    2.0    109ms
 43   -36.74248067268   +    -Inf       -7.94    3.0    149ms
 44   -36.74248067268   +    -Inf       -7.94    1.0    104ms
 45   -36.74248067268      -13.85       -8.20    2.0    114ms
 46   -36.74248067268      -13.85       -8.21    3.0    142ms
 47   -36.74248067268   +  -13.85       -8.21    3.0    131ms
 48   -36.74248067268   +    -Inf       -8.99    2.0    113ms
 49   -36.74248067268   +    -Inf       -8.82    4.0    167ms
 50   -36.74248067268   +    -Inf       -9.12    2.0    119ms
 51   -36.74248067268   +    -Inf       -9.08    2.0    124ms
 52   -36.74248067268   +    -Inf       -9.50    2.0    119ms
 53   -36.74248067268   +    -Inf       -9.64    2.0    133ms
 54   -36.74248067268      -14.15       -9.46    3.0    151ms
 55   -36.74248067268   +  -14.15       -9.86    2.0    114ms
 56   -36.74248067268      -13.85      -10.12    2.0    115ms
 57   -36.74248067268   +  -13.85      -10.27    3.0    129ms
 58   -36.74248067268   +    -Inf      -10.38    2.0    105ms
 59   -36.74248067268   +  -14.15      -10.54    2.0    114ms
 60   -36.74248067268      -14.15      -10.58    3.0    133ms
 61   -36.74248067268   +    -Inf      -11.24    2.0    120ms
 62   -36.74248067268   +  -14.15      -10.99    3.0    151ms
 63   -36.74248067268      -14.15      -11.50    2.0    132ms
 64   -36.74248067268   +    -Inf      -11.07    3.0    150ms
 65   -36.74248067268      -14.15      -11.64    3.0    147ms
 66   -36.74248067268   +  -13.85      -11.34    3.0    134ms
 67   -36.74248067268   +    -Inf      -11.28    3.0    146ms
 68   -36.74248067268      -13.67      -11.77    3.0    141ms
 69   -36.74248067268   +  -13.85      -11.76    2.0    125ms
 70   -36.74248067268      -14.15      -12.62    1.0    104ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73182974311                   -0.88   13.0    359ms
  2   -36.73911866212       -2.14       -1.36    1.0   92.9ms
  3   -36.73662422680   +   -2.60       -1.52    3.0    130ms
  4   -36.74222152464       -2.25       -2.29    1.0   93.5ms
  5   -36.74216616487   +   -4.26       -2.37    6.0    160ms
  6   -36.74239391683       -3.64       -2.39    1.0   94.1ms
  7   -36.74243321965       -4.41       -2.72    1.0   94.7ms
  8   -36.74247526962       -4.38       -3.10    1.0    101ms
  9   -36.74247889481       -5.44       -3.42    4.0    112ms
 10   -36.74248046328       -5.80       -3.91    3.0    119ms
 11   -36.74248047499       -7.93       -4.12    3.0    133ms
 12   -36.74248066966       -6.71       -4.56    2.0    137ms
 13   -36.74248063159   +   -7.42       -4.69    1.0   98.4ms
 14   -36.74248067209       -7.39       -5.32    1.0    103ms
 15   -36.74248067216      -10.14       -5.55    4.0    153ms
 16   -36.74248067262       -9.33       -5.75    1.0    103ms
 17   -36.74248067266      -10.47       -6.18    2.0    113ms
 18   -36.74248067268      -10.66       -6.52    2.0    137ms
 19   -36.74248067268      -11.85       -6.77    4.0    115ms
 20   -36.74248067268   +  -12.38       -6.88    2.0    120ms
 21   -36.74248067268      -12.33       -7.33    1.0   98.3ms
 22   -36.74248067268      -13.07       -7.47    3.0    147ms
 23   -36.74248067268      -13.85       -7.87    1.0   97.6ms
 24   -36.74248067268   +  -14.15       -7.87    3.0    133ms
 25   -36.74248067268      -13.85       -8.22    1.0   98.0ms
 26   -36.74248067268   +  -14.15       -8.77    2.0    131ms
 27   -36.74248067268   +  -13.85       -9.19    2.0    119ms
 28   -36.74248067268   +    -Inf       -9.33    3.0    138ms
 29   -36.74248067268   +    -Inf       -9.80    5.0    125ms
 30   -36.74248067268      -13.67       -9.87    2.0    132ms
 31   -36.74248067268   +  -13.67      -10.33    1.0    107ms
 32   -36.74248067268      -14.15      -10.69    2.0    125ms
 33   -36.74248067268   +    -Inf      -10.79    3.0    143ms
 34   -36.74248067268   +  -14.15      -11.13    1.0   97.1ms
 35   -36.74248067268      -13.67      -11.47    2.0    108ms
 36   -36.74248067268   +  -13.85      -11.74    3.0    130ms
 37   -36.74248067268   +  -13.85      -12.04    2.0    136ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024488980333956

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113796176

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.7235844642762

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).