Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73568991388                   -0.88   11.0    344ms
  2   -36.73858453437       -2.54       -1.69    1.0   85.1ms
  3   -32.87883802005   +    0.59       -0.77    4.0    157ms
  4   -36.72131992200        0.58       -1.74    4.0    151ms
  5   -36.67427425087   +   -1.33       -1.60    2.0    107ms
  6   -36.43121724782   +   -0.61       -1.32    3.0    126ms
  7   -36.73279732969       -0.52       -1.84    3.0    128ms
  8   -36.73992821210       -2.15       -2.19    2.0    102ms
  9   -36.74214538899       -2.65       -2.28    2.0    112ms
 10   -36.74240559283       -3.58       -2.63    2.0    103ms
 11   -36.74248494957       -4.10       -2.84    2.0    121ms
 12   -36.74249400571       -5.04       -3.12    1.0   93.0ms
 13   -36.74248629957   +   -5.11       -3.28    1.0   93.1ms
 14   -36.74249442500       -5.09       -3.34    2.0    102ms
 15   -36.74243014245   +   -4.19       -3.04    3.0    132ms
 16   -36.74250250660       -4.14       -3.49    2.0    241ms
 17   -36.74251177329       -5.03       -3.79    2.0    731ms
 18   -36.74251450354       -5.56       -4.08    2.0    123ms
 19   -36.74251370709   +   -6.10       -3.89    3.0    127ms
 20   -36.74251306053   +   -6.19       -3.93    3.0    131ms
 21   -36.74251323653       -6.75       -3.93    3.0    145ms
 22   -36.74251470814       -5.83       -4.55    2.0    117ms
 23   -36.74251467521   +   -7.48       -4.50    3.0    131ms
 24   -36.74251476058       -7.07       -4.94    1.0   89.5ms
 25   -36.74251476963       -8.04       -5.13    3.0    126ms
 26   -36.74251477273       -8.51       -5.54    2.0    124ms
 27   -36.74251477288       -9.82       -5.85    1.0   90.0ms
 28   -36.74251477288   +  -11.25       -5.73    2.0    125ms
 29   -36.74251477289      -10.87       -5.82    2.0    106ms
 30   -36.74251477279   +  -10.00       -5.83    2.0    119ms
 31   -36.74251477301       -9.66       -6.15    2.0    102ms
 32   -36.74251477303      -10.72       -6.37    2.0    104ms
 33   -36.74251477274   +   -9.55       -5.79    3.0    142ms
 34   -36.74251477298       -9.62       -6.14    3.0    141ms
 35   -36.74251477302      -10.36       -6.38    3.0    125ms
 36   -36.74251477302   +  -11.07       -6.37    3.0    126ms
 37   -36.74251477303      -10.71       -6.73    2.0    107ms
 38   -36.74251477303   +  -11.98       -6.70    3.0    135ms
 39   -36.74251477304      -11.50       -7.19    1.0   90.0ms
 40   -36.74251477304      -12.87       -7.27    3.0    132ms
 41   -36.74251477304      -12.56       -7.58    2.0   99.3ms
 42   -36.74251477304   +  -12.28       -7.15    3.0    140ms
 43   -36.74251477304      -12.25       -8.19    3.0    132ms
 44   -36.74251477304   +    -Inf       -8.21    3.0    131ms
 45   -36.74251477304   +  -14.15       -8.16    2.0    117ms
 46   -36.74251477304   +  -13.45       -7.76    3.0    131ms
 47   -36.74251477304      -13.55       -8.67    3.0    132ms
 48   -36.74251477304      -14.15       -8.69    3.0    126ms
 49   -36.74251477304   +  -14.15       -8.79    2.0    109ms
 50   -36.74251477304      -13.85       -9.30    1.0   89.8ms
 51   -36.74251477304   +  -13.85       -8.98    3.0    140ms
 52   -36.74251477304   +    -Inf       -9.44    3.0    127ms
 53   -36.74251477304      -14.15       -9.62    2.0    103ms
 54   -36.74251477304   +  -14.15       -9.36    3.0    131ms
 55   -36.74251477304   +    -Inf      -10.06    3.0    112ms
 56   -36.74251477304      -13.85      -10.08    3.0    133ms
 57   -36.74251477304   +  -13.85      -10.49    1.0   92.3ms
 58   -36.74251477304   +    -Inf      -10.73    3.0    131ms
 59   -36.74251477304      -13.85      -10.68    2.0    114ms
 60   -36.74251477304   +    -Inf      -10.99    2.0    100ms
 61   -36.74251477304   +    -Inf      -11.38    2.0    108ms
 62   -36.74251477304   +    -Inf      -11.28    2.0    125ms
 63   -36.74251477304   +  -14.15      -11.27    2.0    110ms
 64   -36.74251477304      -14.15      -11.01    3.0    141ms
 65   -36.74251477304   +  -14.15      -11.51    3.0    123ms
 66   -36.74251477304   +  -14.15      -11.53    3.0    132ms
 67   -36.74251477304      -14.15      -12.14    2.0    108ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73268115704                   -0.88   11.0    325ms
  2   -36.73927073774       -2.18       -1.35    1.0   89.6ms
  3   -36.73567475021   +   -2.44       -1.40    3.0    128ms
  4   -36.74232764964       -2.18       -2.24    1.0   89.9ms
  5   -36.74240338296       -4.12       -2.40    5.0    125ms
  6   -36.74240627539       -5.54       -2.36    2.0    112ms
  7   -36.74250114539       -4.02       -2.87    1.0   91.6ms
  8   -36.74250325650       -5.68       -2.87    1.0   89.3ms
  9   -36.74251099499       -5.11       -3.25    1.0   93.2ms
 10   -36.74251436258       -5.47       -3.99    2.0    104ms
 11   -36.74251467368       -6.51       -4.13    4.0    144ms
 12   -36.74251473347       -7.22       -4.30    2.0    100ms
 13   -36.74251477089       -7.43       -4.96    2.0    100ms
 14   -36.74251477202       -8.95       -5.09    4.0    146ms
 15   -36.74251477263       -9.21       -5.16    2.0   96.3ms
 16   -36.74251477217   +   -9.33       -5.31    2.0    109ms
 17   -36.74251477285       -9.16       -5.50    1.0   94.5ms
 18   -36.74251477295      -10.00       -5.75    1.0   95.0ms
 19   -36.74251477303      -10.14       -6.28    5.0    123ms
 20   -36.74251477303      -11.08       -6.43    3.0    133ms
 21   -36.74251477304      -11.47       -7.00    1.0   94.7ms
 22   -36.74251477304   +  -11.88       -6.66    3.0    141ms
 23   -36.74251477304      -11.94       -7.04    2.0    109ms
 24   -36.74251477304      -12.62       -7.68    2.0    118ms
 25   -36.74251477304      -14.15       -7.87    2.0    127ms
 26   -36.74251477304   +  -14.15       -8.37    1.0   91.6ms
 27   -36.74251477304   +    -Inf       -8.54    3.0    136ms
 28   -36.74251477304   +    -Inf       -8.79    1.0   94.5ms
 29   -36.74251477304      -14.15       -9.25    3.0    132ms
 30   -36.74251477304   +    -Inf       -9.72    5.0    126ms
 31   -36.74251477304   +  -14.15       -9.93    3.0    124ms
 32   -36.74251477304      -14.15      -10.01    2.0    110ms
 33   -36.74251477304      -14.15      -10.46    1.0   91.5ms
 34   -36.74251477304   +    -Inf      -10.97    3.0    133ms
 35   -36.74251477304   +  -13.85      -11.14    6.0    131ms
 36   -36.74251477304   +    -Inf      -11.44    1.0   95.8ms
 37   -36.74251477304   +    -Inf      -11.58    2.0    127ms
 38   -36.74251477304      -13.85      -11.98    1.0   91.8ms
 39   -36.74251477304   +  -13.85      -12.17    3.0    137ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448777549218

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244209848206076

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723606478093838

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).