Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73083932089                   -0.88   12.0    335ms
  2   -35.95701822885   +   -0.11       -1.10    2.0    102ms
  3   +149.2093593747   +    2.27        0.08   28.0    414ms
  4   -24.65953719718        2.24       -0.47   11.0    297ms
  5   -35.38270439849        1.03       -0.95    4.0    158ms
  6   -26.68864623024   +    0.94       -0.55    5.0    161ms
  7   -36.67866560802        1.00       -1.43    4.0    153ms
  8   -36.73260835838       -1.27       -1.73    2.0    108ms
  9   -36.74070454634       -2.09       -1.97    2.0    100ms
 10   -36.73961230392   +   -2.96       -2.03    2.0    133ms
 11   -36.73548292417   +   -2.38       -1.94    2.0    101ms
 12   -36.73802470556       -2.59       -2.18    1.0   88.8ms
 13   -36.74159071796       -2.45       -2.42    1.0   92.2ms
 14   -36.74168329823       -4.03       -2.54    1.0   92.0ms
 15   -36.74223329097       -3.26       -2.78    2.0    103ms
 16   -36.73244011364   +   -2.01       -2.07    3.0    140ms
 17   -36.74245103537       -2.00       -2.78    4.0    144ms
 18   -36.73649863955   +   -2.23       -2.17    3.0    131ms
 19   -36.74234355145       -2.23       -2.76    4.0    262ms
 20   -36.74233585777   +   -5.11       -2.79    2.0    119ms
 21   -36.74250885770       -3.76       -3.32    1.0    688ms
 22   -36.74228839863   +   -3.66       -2.82    4.0    147ms
 23   -36.74250672064       -3.66       -3.50    3.0    131ms
 24   -36.74251441834       -5.11       -3.87    2.0    109ms
 25   -36.74251445346       -7.45       -3.78    3.0    134ms
 26   -36.74251454504       -7.04       -4.31    1.0    100ms
 27   -36.74251475701       -6.67       -4.65    2.0    121ms
 28   -36.74250519429   +   -5.02       -3.58    4.0    152ms
 29   -36.74251473355       -5.02       -4.67    4.0    155ms
 30   -36.74251474260       -8.04       -4.73    2.0    114ms
 31   -36.74251476181       -7.72       -4.92    2.0    106ms
 32   -36.74251476438       -8.59       -5.02    2.0    126ms
 33   -36.74251477259       -8.09       -5.46    2.0    104ms
 34   -36.74251477227   +   -9.49       -5.40    2.0    117ms
 35   -36.74251476706   +   -8.28       -5.11    3.0    127ms
 36   -36.74251477230       -8.28       -5.57    2.0    107ms
 37   -36.74251477303       -9.14       -6.21    2.0    107ms
 38   -36.74251477299   +  -10.46       -6.22    4.0    157ms
 39   -36.74251477302      -10.56       -6.40    1.0   92.4ms
 40   -36.74251477302   +  -11.22       -6.37    2.0    113ms
 41   -36.74251477301   +  -12.32       -6.38    3.0    130ms
 42   -36.74251477304      -10.67       -6.85    2.0    107ms
 43   -36.74251477304      -12.60       -7.14    2.0    124ms
 44   -36.74251477303   +  -11.74       -6.83    3.0    131ms
 45   -36.74251477304      -11.64       -7.64    3.0    122ms
 46   -36.74251477304   +  -13.19       -7.29    3.0    139ms
 47   -36.74251477304   +  -13.55       -7.42    3.0    124ms
 48   -36.74251477304      -12.94       -7.96    2.0    109ms
 49   -36.74251477304      -13.85       -8.13    3.0    126ms
 50   -36.74251477304   +  -14.15       -8.06    2.0    107ms
 51   -36.74251477304   +  -14.15       -8.56    1.0   90.2ms
 52   -36.74251477304      -13.85       -8.27    3.0    139ms
 53   -36.74251477304   +  -14.15       -8.73    3.0    126ms
 54   -36.74251477304      -14.15       -8.47    2.0    110ms
 55   -36.74251477304   +    -Inf       -8.45    2.0    114ms
 56   -36.74251477304   +  -13.85       -8.41    3.0    131ms
 57   -36.74251477304      -14.15       -9.66    3.0    126ms
 58   -36.74251477304   +  -14.15       -9.69    3.0    149ms
 59   -36.74251477304      -14.15       -9.19    3.0    133ms
 60   -36.74251477304   +    -Inf       -9.90    3.0    123ms
 61   -36.74251477304      -14.15      -10.53    2.0    123ms
 62   -36.74251477304   +  -14.15      -10.39    3.0    135ms
 63   -36.74251477304      -14.15      -10.87    2.0    103ms
 64   -36.74251477304   +    -Inf      -10.87    3.0    127ms
 65   -36.74251477304      -13.85      -11.31    2.0    104ms
 66   -36.74251477304   +  -13.55      -11.46    3.0    134ms
 67   -36.74251477304      -14.15      -11.52    2.0    109ms
 68   -36.74251477304   +    -Inf      -11.25    3.0    144ms
 69   -36.74251477304   +  -14.15      -11.73    3.0    133ms
 70   -36.74251477304   +    -Inf      -12.09    2.0    105ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73425804378                   -0.88   11.0    333ms
  2   -36.73998514526       -2.24       -1.36    1.0   89.7ms
  3   -36.73699599240   +   -2.52       -1.52    2.0    103ms
  4   -36.74228794951       -2.28       -2.44    1.0   90.7ms
  5   -36.74234243138       -4.26       -2.38    4.0    145ms
  6   -36.74247414912       -3.88       -2.56    4.0    107ms
  7   -36.74248750394       -4.87       -2.67    1.0   89.1ms
  8   -36.74250874683       -4.67       -3.43    1.0   93.4ms
  9   -36.74251432481       -5.25       -3.55    3.0    131ms
 10   -36.74251468589       -6.44       -3.93    2.0   95.1ms
 11   -36.74251468868       -8.55       -4.43    6.0    126ms
 12   -36.74251473362       -7.35       -4.51    3.0    136ms
 13   -36.74251477088       -7.43       -4.88    1.0   95.0ms
 14   -36.74251477220       -8.88       -5.36    2.0    103ms
 15   -36.74251477291       -9.15       -5.61    3.0    135ms
 16   -36.74251477299      -10.05       -5.82    1.0   91.5ms
 17   -36.74251477300      -11.07       -6.20    5.0    119ms
 18   -36.74251477303      -10.49       -6.68    2.0    107ms
 19   -36.74251477304      -11.56       -6.89    3.0    132ms
 20   -36.74251477304   +  -13.11       -7.17    1.0   94.8ms
 21   -36.74251477304      -12.72       -7.41    3.0    134ms
 22   -36.74251477304   +    -Inf       -7.69    1.0   92.3ms
 23   -36.74251477304   +    -Inf       -8.22    3.0    106ms
 24   -36.74251477304      -13.85       -8.12    3.0    134ms
 25   -36.74251477304   +    -Inf       -8.44    1.0   95.3ms
 26   -36.74251477304   +    -Inf       -8.95    2.0   98.8ms
 27   -36.74251477304   +  -14.15       -9.17    4.0    136ms
 28   -36.74251477304   +    -Inf       -9.52    2.0    128ms
 29   -36.74251477304   +  -14.15       -9.79    2.0    101ms
 30   -36.74251477304      -14.15      -10.02    2.0    105ms
 31   -36.74251477304      -14.15      -10.20    2.0    109ms
 32   -36.74251477304   +    -Inf      -10.65    1.0   91.4ms
 33   -36.74251477304   +  -14.15      -10.68    4.0    140ms
 34   -36.74251477304      -14.15      -11.17    1.0   97.4ms
 35   -36.74251477304   +    -Inf      -11.25    4.0    133ms
 36   -36.74251477304   +  -14.15      -11.39    1.0   95.7ms
 37   -36.74251477304   +  -14.15      -11.63    4.0    107ms
 38   -36.74251477304   +    -Inf      -12.04    2.0    101ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448777178898

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24420984431616

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723597567775634

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).