Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73341725471                   -0.88   12.0    369ms
  2   -36.50812345319   +   -0.65       -1.30    1.0   97.7ms
  3   +102.3027491901   +    2.14        0.02   21.0    349ms
  4   -35.93993413728        2.14       -0.96    9.0    300ms
  5   -26.36731724714   +    0.98       -0.55    5.0    176ms
  6   -36.51598429397        1.01       -1.27    4.0    170ms
  7   -36.66270656606       -0.83       -1.51    2.0    120ms
  8   -36.67216770206       -2.02       -1.59    2.0    122ms
  9   -36.73291132745       -1.22       -1.85    2.0    103ms
 10   -36.74130275946       -2.08       -2.09    1.0    223ms
 11   -36.73638328958   +   -2.31       -2.02    2.0    121ms
 12   -36.73835971603       -2.70       -2.17    1.0    1.40s
 13   -36.74152373725       -2.50       -2.46    1.0   98.0ms
 14   -36.74229034472       -3.12       -2.64    3.0    123ms
 15   -36.73670975824   +   -2.25       -2.16    3.0    140ms
 16   -36.73843884860       -2.76       -2.20    3.0    148ms
 17   -36.73871180014       -3.56       -2.27    3.0    138ms
 18   -36.74246907801       -2.43       -3.30    3.0    146ms
 19   -36.74245205428   +   -4.77       -3.15    3.0    158ms
 20   -36.74239845133   +   -4.27       -3.05    3.0    159ms
 21   -36.74247901345       -4.09       -3.76    2.0    120ms
 22   -36.74247667080   +   -5.63       -3.61    2.0    128ms
 23   -36.74248038552       -5.43       -4.22    2.0    102ms
 24   -36.74248037168   +   -7.86       -4.20    3.0    139ms
 25   -36.74248065825       -6.54       -4.64    2.0    112ms
 26   -36.74248065631   +   -8.71       -4.65    2.0    120ms
 27   -36.74248065815       -8.73       -4.92    2.0    103ms
 28   -36.74248048862   +   -6.77       -4.39    3.0    144ms
 29   -36.74248061983       -6.88       -4.69    4.0    159ms
 30   -36.74248065043       -7.51       -4.85    2.0    121ms
 31   -36.74248067170       -7.67       -5.41    2.0    110ms
 32   -36.74248067218       -9.32       -5.66    3.0    135ms
 33   -36.74248067165   +   -9.27       -5.48    2.0    128ms
 34   -36.74248067255       -9.05       -5.99    3.0    136ms
 35   -36.74248067261      -10.22       -5.99    3.0    136ms
 36   -36.74248067268      -10.17       -6.37    1.0   94.7ms
 37   -36.74248067264   +  -10.48       -6.18    3.0    145ms
 38   -36.74248067268      -10.43       -6.77    2.0    110ms
 39   -36.74248067268   +  -12.26       -6.81    2.0    106ms
 40   -36.74248067268      -11.76       -7.16    2.0    110ms
 41   -36.74248067268   +  -12.51       -7.14    3.0    143ms
 42   -36.74248067268   +  -11.42       -6.74    3.0    136ms
 43   -36.74248067268      -11.40       -7.24    3.0    142ms
 44   -36.74248067268      -12.94       -7.60    1.0   94.8ms
 45   -36.74248067268      -13.67       -7.82    3.0    123ms
 46   -36.74248067268      -13.85       -7.96    3.0    130ms
 47   -36.74248067268      -13.67       -8.14    2.0    134ms
 48   -36.74248067268   +  -13.67       -8.25    2.0    113ms
 49   -36.74248067268      -13.85       -8.37    2.0    125ms
 50   -36.74248067268      -13.67       -8.68    2.0    110ms
 51   -36.74248067268   +    -Inf       -8.85    1.0    102ms
 52   -36.74248067268   +  -13.85       -8.92    2.0    103ms
 53   -36.74248067268   +    -Inf       -9.32    1.0    100ms
 54   -36.74248067268   +    -Inf       -9.42    3.0    139ms
 55   -36.74248067268   +    -Inf       -9.69    2.0    116ms
 56   -36.74248067268   +  -13.85       -9.87    2.0    104ms
 57   -36.74248067268      -14.15      -10.02    2.0    111ms
 58   -36.74248067268      -14.15      -10.28    2.0    128ms
 59   -36.74248067268   +    -Inf      -10.43    2.0    116ms
 60   -36.74248067268   +  -13.85      -10.67    2.0    107ms
 61   -36.74248067268      -14.15      -10.79    3.0    139ms
 62   -36.74248067268      -14.15      -10.71    2.0    130ms
 63   -36.74248067268   +    -Inf      -11.29    2.0    116ms
 64   -36.74248067268   +    -Inf      -11.40    2.0    120ms
 65   -36.74248067268   +  -14.15      -11.62    3.0    124ms
 66   -36.74248067268      -14.15      -11.65    2.0    128ms
 67   -36.74248067268   +    -Inf      -11.50    3.0    141ms
 68   -36.74248067268   +    -Inf      -11.92    2.0    110ms
 69   -36.74248067268   +  -13.85      -12.22    3.0    122ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73494120206                   -0.88   11.0    361ms
  2   -36.74049226626       -2.26       -1.36    1.0   91.8ms
  3   -36.74164897467       -2.94       -2.30    2.0    102ms
  4   -36.74199958264       -3.46       -2.12    4.0    162ms
  5   -36.74238552944       -3.41       -2.54    1.0   92.5ms
  6   -36.74244401081       -4.23       -2.84    2.0    104ms
  7   -36.74247126010       -4.56       -2.82    2.0   98.4ms
  8   -36.74247462426       -5.47       -3.41    1.0    100ms
  9   -36.74248030830       -5.25       -3.62    3.0    134ms
 10   -36.74248046239       -6.81       -3.89    2.0    109ms
 11   -36.74248007649   +   -6.41       -3.96    2.0    111ms
 12   -36.74248066500       -6.23       -4.50    2.0    112ms
 13   -36.74248067104       -8.22       -5.00    5.0    128ms
 14   -36.74248067138       -9.47       -5.14    3.0    145ms
 15   -36.74248067252       -8.94       -5.34    2.0    102ms
 16   -36.74248067259      -10.15       -5.95    1.0    102ms
 17   -36.74248067268      -10.07       -6.11    3.0    136ms
 18   -36.74248067268      -11.82       -6.48    1.0    102ms
 19   -36.74248067268      -11.77       -6.61    5.0    122ms
 20   -36.74248067268      -11.89       -6.92    2.0    105ms
 21   -36.74248067268      -12.94       -7.17    2.0    135ms
 22   -36.74248067268      -14.15       -7.37    2.0    102ms
 23   -36.74248067268      -13.85       -7.75    1.0    101ms
 24   -36.74248067268      -13.85       -8.00    2.0    129ms
 25   -36.74248067268      -14.15       -8.38    4.0    119ms
 26   -36.74248067268   +  -14.15       -8.66    2.0    130ms
 27   -36.74248067268   +    -Inf       -9.07    2.0    111ms
 28   -36.74248067268   +    -Inf       -9.42    2.0    130ms
 29   -36.74248067268   +  -13.85       -9.75    2.0    115ms
 30   -36.74248067268      -13.85      -10.03    3.0    111ms
 31   -36.74248067268   +    -Inf      -10.41    3.0    135ms
 32   -36.74248067268   +  -13.85      -10.47    2.0    130ms
 33   -36.74248067268      -13.85      -11.04    2.0    117ms
 34   -36.74248067268   +    -Inf      -11.22    2.0    135ms
 35   -36.74248067268   +    -Inf      -11.52    1.0   95.8ms
 36   -36.74248067268   +    -Inf      -11.83    2.0    111ms
 37   -36.74248067268   +  -14.15      -11.88    2.0    129ms
 38   -36.74248067268      -13.67      -12.23    1.0    101ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024488980448886

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.2442111139169

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723582812210099

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).