Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#779"{DFTK.var"#anderson#778#780"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03140898067004497 + 0.03794607686464616im 0.0824821099893491 + 0.00173799518820095im … 0.03277391581640718 - 0.053267506296299894im -0.04901194480353713 - 0.049039485953148096im; 0.06387312355433308 - 0.0007432979300888926im 0.05338308872560016 - 0.07483175876085535im … -0.02844375528952635 - 0.022332496699027954im -0.010367366262417382 + 0.041636439710402116im; … ; 0.027798401379787785 - 0.09028559084291427im -0.07141982339787298 - 0.08739812591918497im … -0.08261540326342942 + 0.00152525391677344im -0.018823471950016237 + 0.04097100933952898im; -0.09435204962958864 - 0.0831185198283093im -0.05203975393267222 + 0.04002378511358655im … 0.028890005726205363 + 0.015308745135762733im 0.016495240783992053 - 0.07280690385097742im;;; 0.08513715575585176 - 0.051769231794934825im 0.010557533056223256 - 0.05512989604171701im … 0.02182633039677511 + 0.028636732239152328im 0.08132701486985153 + 0.043544039197435214im; 0.041882922718193064 - 0.0549165904500156im -0.004149857305020065 - 0.020109960422216765im … 0.062008326293162934 + 0.05573156507508641im 0.10520788633057604 - 0.0028608328151611823im; … ; -0.03500583771274002 - 0.04802803129208035im 0.0008105463624771304 + 0.0008985212271474807im … 0.06301190636681245 - 0.03405313958297759im 0.003976249579806079 - 0.07322361431457045im; 0.019841959642409986 + 0.011732409005953529im 0.07173435264403683 - 0.046346438975897304im … 0.019407490392856067 - 0.056081352232593036im -0.009246243776015324 + 0.006303149724699739im;;; -0.02069057224328912 - 0.08467533046376731im 0.002738475997767885 + 0.04776706852955566im … 0.1310778479895256 + 0.04507589341650884im 0.1547277791432114 - 0.10616271681787232im; -0.01586068164243258 + 0.025669569453601732im 0.0636852755503461 + 0.03768908936348604im … 0.12632409593184316 - 0.024171891076611433im 0.033939920308226144 - 0.0864164722692152im; … ; 0.06910004945925238 - 0.0006693382894177972im 0.07478851924827515 - 0.06834938896397862im … 0.015071863722108513 - 0.066271126523174im -0.006399740386878711 + 0.0008883752018149782im; 0.11191683045826856 - 0.11578858352410709im -0.013928002051850484 - 0.09641406297752056im … 0.010443602023386775 + 0.02623152245345994im 0.1306119623450985 + 0.024764467578552128im;;; … ;;; 0.14151693286979208 - 0.05936716454688257im 0.06316948112311477 - 0.054452888961761425im … -0.05439651450718552 - 0.006734300906994221im 0.0996861540634055 + 0.03437685741756909im; 0.02704926495031537 - 0.12774458231415226im 0.0016860505408119453 - 0.018238778920018697im … 0.07972143921464787 + 0.019695724630572974im 0.14355807140869895 - 0.12267922792721934im; … ; -0.05023527303434085 - 0.07203731814137865im -0.050291808975553076 + 0.04544936237234225im … -0.01436195122492773 + 0.09796618087353304im 0.05721447087766396 - 0.06783149075890549im; 0.0033291321984192978 + 0.05036694598161838im 0.06974913996044778 + 0.05058334145391106im … 0.0042092579819279635 - 0.1051151822255272im -0.07276924237664437 - 0.05312451961833628im;;; 0.03674081474775055 - 0.14687544457125812im -0.002658528988338569 - 0.017832377372895346im … 0.03381227462170644 + 0.03511157251254252im 0.12356989604697984 - 0.08426225443354246im; -0.033175755701744754 - 0.02410240589095154im 0.09014447166543892 + 0.02876759847742144im … 0.11087771555661699 - 0.10415515276134182im -0.01171054780681769 - 0.17653228773931542im; … ; -0.14878478825778127 + 0.055351780037939405im 0.03342494075025297 + 0.09160794420517938im … 0.03047434310840862 - 0.05863123793231574im -0.15923329502583336 - 0.15517757729876783im; 0.08046177591965775 + 0.03809945902884504im 0.0779350445116504 - 0.03581459784679175im … -0.1061029643507674 - 0.07325964142297964im -0.08486201358325544 + 0.045885220588158894im;;; -0.08566079589031189 - 0.06358966022291782im 0.014236590543451146 + 0.054379517042955315im … 0.04590137707986033 - 0.012841577910861088im 0.004322713974344826 - 0.14319600656294257im; 0.04198651747021816 + 0.030929714855643713im 0.11697981319587941 - 0.032629930891038446im … -0.00025333849901957445 - 0.09944876571289091im -0.06952554834272062 - 0.03993258199625317im; … ; -0.002333171489159791 + 0.09488349140378355im 0.062010985644312094 - 0.0625427425810049im … -0.12506668575425126 - 0.14568831898935516im -0.23495416420124648 + 0.01745873146990428im; 0.04023013302335556 - 0.13386227718572224im -0.06323546002335373 - 0.06401158722595898im … -0.11836302509243311 + 0.016465662068571106im -0.005810892473704616 + 0.07162467666861477im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03140898067004497 + 0.03794607686464616im 0.0824821099893491 + 0.00173799518820095im … 0.03277391581640718 - 0.053267506296299894im -0.04901194480353713 - 0.049039485953148096im; 0.06387312355433308 - 0.0007432979300888926im 0.05338308872560016 - 0.07483175876085535im … -0.02844375528952635 - 0.022332496699027954im -0.010367366262417382 + 0.041636439710402116im; … ; 0.027798401379787785 - 0.09028559084291427im -0.07141982339787298 - 0.08739812591918497im … -0.08261540326342942 + 0.00152525391677344im -0.018823471950016237 + 0.04097100933952898im; -0.09435204962958864 - 0.0831185198283093im -0.05203975393267222 + 0.04002378511358655im … 0.028890005726205363 + 0.015308745135762733im 0.016495240783992053 - 0.07280690385097742im;;; 0.08513715575585176 - 0.051769231794934825im 0.010557533056223256 - 0.05512989604171701im … 0.02182633039677511 + 0.028636732239152328im 0.08132701486985153 + 0.043544039197435214im; 0.041882922718193064 - 0.0549165904500156im -0.004149857305020065 - 0.020109960422216765im … 0.062008326293162934 + 0.05573156507508641im 0.10520788633057604 - 0.0028608328151611823im; … ; -0.03500583771274002 - 0.04802803129208035im 0.0008105463624771304 + 0.0008985212271474807im … 0.06301190636681245 - 0.03405313958297759im 0.003976249579806079 - 0.07322361431457045im; 0.019841959642409986 + 0.011732409005953529im 0.07173435264403683 - 0.046346438975897304im … 0.019407490392856067 - 0.056081352232593036im -0.009246243776015324 + 0.006303149724699739im;;; -0.02069057224328912 - 0.08467533046376731im 0.002738475997767885 + 0.04776706852955566im … 0.1310778479895256 + 0.04507589341650884im 0.1547277791432114 - 0.10616271681787232im; -0.01586068164243258 + 0.025669569453601732im 0.0636852755503461 + 0.03768908936348604im … 0.12632409593184316 - 0.024171891076611433im 0.033939920308226144 - 0.0864164722692152im; … ; 0.06910004945925238 - 0.0006693382894177972im 0.07478851924827515 - 0.06834938896397862im … 0.015071863722108513 - 0.066271126523174im -0.006399740386878711 + 0.0008883752018149782im; 0.11191683045826856 - 0.11578858352410709im -0.013928002051850484 - 0.09641406297752056im … 0.010443602023386775 + 0.02623152245345994im 0.1306119623450985 + 0.024764467578552128im;;; … ;;; 0.14151693286979208 - 0.05936716454688257im 0.06316948112311477 - 0.054452888961761425im … -0.05439651450718552 - 0.006734300906994221im 0.0996861540634055 + 0.03437685741756909im; 0.02704926495031537 - 0.12774458231415226im 0.0016860505408119453 - 0.018238778920018697im … 0.07972143921464787 + 0.019695724630572974im 0.14355807140869895 - 0.12267922792721934im; … ; -0.05023527303434085 - 0.07203731814137865im -0.050291808975553076 + 0.04544936237234225im … -0.01436195122492773 + 0.09796618087353304im 0.05721447087766396 - 0.06783149075890549im; 0.0033291321984192978 + 0.05036694598161838im 0.06974913996044778 + 0.05058334145391106im … 0.0042092579819279635 - 0.1051151822255272im -0.07276924237664437 - 0.05312451961833628im;;; 0.03674081474775055 - 0.14687544457125812im -0.002658528988338569 - 0.017832377372895346im … 0.03381227462170644 + 0.03511157251254252im 0.12356989604697984 - 0.08426225443354246im; -0.033175755701744754 - 0.02410240589095154im 0.09014447166543892 + 0.02876759847742144im … 0.11087771555661699 - 0.10415515276134182im -0.01171054780681769 - 0.17653228773931542im; … ; -0.14878478825778127 + 0.055351780037939405im 0.03342494075025297 + 0.09160794420517938im … 0.03047434310840862 - 0.05863123793231574im -0.15923329502583336 - 0.15517757729876783im; 0.08046177591965775 + 0.03809945902884504im 0.0779350445116504 - 0.03581459784679175im … -0.1061029643507674 - 0.07325964142297964im -0.08486201358325544 + 0.045885220588158894im;;; -0.08566079589031189 - 0.06358966022291782im 0.014236590543451146 + 0.054379517042955315im … 0.04590137707986033 - 0.012841577910861088im 0.004322713974344826 - 0.14319600656294257im; 0.04198651747021816 + 0.030929714855643713im 0.11697981319587941 - 0.032629930891038446im … -0.00025333849901957445 - 0.09944876571289091im -0.06952554834272062 - 0.03993258199625317im; … ; -0.002333171489159791 + 0.09488349140378355im 0.062010985644312094 - 0.0625427425810049im … -0.12506668575425126 - 0.14568831898935516im -0.23495416420124648 + 0.01745873146990428im; 0.04023013302335556 - 0.13386227718572224im -0.06323546002335373 - 0.06401158722595898im … -0.11836302509243311 + 0.016465662068571106im -0.005810892473704616 + 0.07162467666861477im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03140898067004497 + 0.03794607686464616im 0.0824821099893491 + 0.00173799518820095im … 0.03277391581640718 - 0.053267506296299894im -0.04901194480353713 - 0.049039485953148096im; 0.06387312355433308 - 0.0007432979300888926im 0.05338308872560016 - 0.07483175876085535im … -0.02844375528952635 - 0.022332496699027954im -0.010367366262417382 + 0.041636439710402116im; … ; 0.027798401379787785 - 0.09028559084291427im -0.07141982339787298 - 0.08739812591918497im … -0.08261540326342942 + 0.00152525391677344im -0.018823471950016237 + 0.04097100933952898im; -0.09435204962958864 - 0.0831185198283093im -0.05203975393267222 + 0.04002378511358655im … 0.028890005726205363 + 0.015308745135762733im 0.016495240783992053 - 0.07280690385097742im;;; 0.08513715575585176 - 0.051769231794934825im 0.010557533056223256 - 0.05512989604171701im … 0.02182633039677511 + 0.028636732239152328im 0.08132701486985153 + 0.043544039197435214im; 0.041882922718193064 - 0.0549165904500156im -0.004149857305020065 - 0.020109960422216765im … 0.062008326293162934 + 0.05573156507508641im 0.10520788633057604 - 0.0028608328151611823im; … ; -0.03500583771274002 - 0.04802803129208035im 0.0008105463624771304 + 0.0008985212271474807im … 0.06301190636681245 - 0.03405313958297759im 0.003976249579806079 - 0.07322361431457045im; 0.019841959642409986 + 0.011732409005953529im 0.07173435264403683 - 0.046346438975897304im … 0.019407490392856067 - 0.056081352232593036im -0.009246243776015324 + 0.006303149724699739im;;; -0.02069057224328912 - 0.08467533046376731im 0.002738475997767885 + 0.04776706852955566im … 0.1310778479895256 + 0.04507589341650884im 0.1547277791432114 - 0.10616271681787232im; -0.01586068164243258 + 0.025669569453601732im 0.0636852755503461 + 0.03768908936348604im … 0.12632409593184316 - 0.024171891076611433im 0.033939920308226144 - 0.0864164722692152im; … ; 0.06910004945925238 - 0.0006693382894177972im 0.07478851924827515 - 0.06834938896397862im … 0.015071863722108513 - 0.066271126523174im -0.006399740386878711 + 0.0008883752018149782im; 0.11191683045826856 - 0.11578858352410709im -0.013928002051850484 - 0.09641406297752056im … 0.010443602023386775 + 0.02623152245345994im 0.1306119623450985 + 0.024764467578552128im;;; … ;;; 0.14151693286979208 - 0.05936716454688257im 0.06316948112311477 - 0.054452888961761425im … -0.05439651450718552 - 0.006734300906994221im 0.0996861540634055 + 0.03437685741756909im; 0.02704926495031537 - 0.12774458231415226im 0.0016860505408119453 - 0.018238778920018697im … 0.07972143921464787 + 0.019695724630572974im 0.14355807140869895 - 0.12267922792721934im; … ; -0.05023527303434085 - 0.07203731814137865im -0.050291808975553076 + 0.04544936237234225im … -0.01436195122492773 + 0.09796618087353304im 0.05721447087766396 - 0.06783149075890549im; 0.0033291321984192978 + 0.05036694598161838im 0.06974913996044778 + 0.05058334145391106im … 0.0042092579819279635 - 0.1051151822255272im -0.07276924237664437 - 0.05312451961833628im;;; 0.03674081474775055 - 0.14687544457125812im -0.002658528988338569 - 0.017832377372895346im … 0.03381227462170644 + 0.03511157251254252im 0.12356989604697984 - 0.08426225443354246im; -0.033175755701744754 - 0.02410240589095154im 0.09014447166543892 + 0.02876759847742144im … 0.11087771555661699 - 0.10415515276134182im -0.01171054780681769 - 0.17653228773931542im; … ; -0.14878478825778127 + 0.055351780037939405im 0.03342494075025297 + 0.09160794420517938im … 0.03047434310840862 - 0.05863123793231574im -0.15923329502583336 - 0.15517757729876783im; 0.08046177591965775 + 0.03809945902884504im 0.0779350445116504 - 0.03581459784679175im … -0.1061029643507674 - 0.07325964142297964im -0.08486201358325544 + 0.045885220588158894im;;; -0.08566079589031189 - 0.06358966022291782im 0.014236590543451146 + 0.054379517042955315im … 0.04590137707986033 - 0.012841577910861088im 0.004322713974344826 - 0.14319600656294257im; 0.04198651747021816 + 0.030929714855643713im 0.11697981319587941 - 0.032629930891038446im … -0.00025333849901957445 - 0.09944876571289091im -0.06952554834272062 - 0.03993258199625317im; … ; -0.002333171489159791 + 0.09488349140378355im 0.062010985644312094 - 0.0625427425810049im … -0.12506668575425126 - 0.14568831898935516im -0.23495416420124648 + 0.01745873146990428im; 0.04023013302335556 - 0.13386227718572224im -0.06323546002335373 - 0.06401158722595898im … -0.11836302509243311 + 0.016465662068571106im -0.005810892473704616 + 0.07162467666861477im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722898 -11.10030839674188 … -8.289845772412063 -11.10030839674194; -11.10030839674188 -9.130057825947423 … -9.13005779589613 -11.100308356758903; … ; -8.289845772412063 -9.13005779589613 … -4.1495899216429155 -6.287956198198898; -11.100308396741939 -11.100308356758903 … -6.2879561981988985 -9.111848223576981;;; -11.100308396741882 -9.130057825947421 … -9.130057795896132 -11.100308356758905; -9.130057825947423 -6.903159481981834 … -9.130057827297104 -10.053883826551722; … ; -9.13005779589613 -9.130057827297104 … -5.294353669214026 -7.547399206521255; -11.100308356758903 -10.053883826551722 … -7.547399206521256 -10.053883826551827;;; -8.289845772412361 -6.307621931516417 … -8.289845781011316 -9.111848193525649; -6.307621931516419 -4.5166556658154695 … -7.547399237611087 -7.547399206521487; … ; -8.289845781011314 -7.547399237611086 … -5.768969083580866 -7.547399237611158; -9.111848193525649 -7.5473992065214865 … -7.547399237611159 -9.111848224926886;;; … ;;; -5.30103171824946 -6.307621955788624 … -2.5497035732757083 -3.849582179387489; -6.307621955788625 -6.903159495208662 … -3.3290606985459545 -4.878419358630322; … ; -2.5497035732757074 -3.329060698545955 … -1.2567984709022546 -1.8141947460407852; -3.849582179387488 -4.878419358630324 … -1.8141947460407848 -2.7147673353223047;;; -8.289845772412065 -9.13005779589613 … -4.149589921642916 -6.287956198198897; -9.130057795896132 -9.130057827297103 … -5.294353669214025 -7.547399206521254; … ; -4.149589921642916 -5.294353669214026 … -1.9094492399150234 -2.894612367851934; -6.287956198198898 -7.547399206521255 … -2.8946123678519338 -4.485542759371643;;; -11.10030839674194 -11.100308356758905 … -6.2879561981988985 -9.111848223576978; -11.100308356758903 -10.05388382655172 … -7.5473992065212565 -10.053883826551827; … ; -6.287956198198897 -7.5473992065212565 … -2.8946123678519338 -4.485542759371643; -9.11184822357698 -10.053883826551827 … -4.485542759371643 -6.871104500134801]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.03140898067004497 + 0.03794607686464616im 0.0824821099893491 + 0.00173799518820095im … 0.03277391581640718 - 0.053267506296299894im -0.04901194480353713 - 0.049039485953148096im; 0.06387312355433308 - 0.0007432979300888926im 0.05338308872560016 - 0.07483175876085535im … -0.02844375528952635 - 0.022332496699027954im -0.010367366262417382 + 0.041636439710402116im; … ; 0.027798401379787785 - 0.09028559084291427im -0.07141982339787298 - 0.08739812591918497im … -0.08261540326342942 + 0.00152525391677344im -0.018823471950016237 + 0.04097100933952898im; -0.09435204962958864 - 0.0831185198283093im -0.05203975393267222 + 0.04002378511358655im … 0.028890005726205363 + 0.015308745135762733im 0.016495240783992053 - 0.07280690385097742im;;; 0.08513715575585176 - 0.051769231794934825im 0.010557533056223256 - 0.05512989604171701im … 0.02182633039677511 + 0.028636732239152328im 0.08132701486985153 + 0.043544039197435214im; 0.041882922718193064 - 0.0549165904500156im -0.004149857305020065 - 0.020109960422216765im … 0.062008326293162934 + 0.05573156507508641im 0.10520788633057604 - 0.0028608328151611823im; … ; -0.03500583771274002 - 0.04802803129208035im 0.0008105463624771304 + 0.0008985212271474807im … 0.06301190636681245 - 0.03405313958297759im 0.003976249579806079 - 0.07322361431457045im; 0.019841959642409986 + 0.011732409005953529im 0.07173435264403683 - 0.046346438975897304im … 0.019407490392856067 - 0.056081352232593036im -0.009246243776015324 + 0.006303149724699739im;;; -0.02069057224328912 - 0.08467533046376731im 0.002738475997767885 + 0.04776706852955566im … 0.1310778479895256 + 0.04507589341650884im 0.1547277791432114 - 0.10616271681787232im; -0.01586068164243258 + 0.025669569453601732im 0.0636852755503461 + 0.03768908936348604im … 0.12632409593184316 - 0.024171891076611433im 0.033939920308226144 - 0.0864164722692152im; … ; 0.06910004945925238 - 0.0006693382894177972im 0.07478851924827515 - 0.06834938896397862im … 0.015071863722108513 - 0.066271126523174im -0.006399740386878711 + 0.0008883752018149782im; 0.11191683045826856 - 0.11578858352410709im -0.013928002051850484 - 0.09641406297752056im … 0.010443602023386775 + 0.02623152245345994im 0.1306119623450985 + 0.024764467578552128im;;; … ;;; 0.14151693286979208 - 0.05936716454688257im 0.06316948112311477 - 0.054452888961761425im … -0.05439651450718552 - 0.006734300906994221im 0.0996861540634055 + 0.03437685741756909im; 0.02704926495031537 - 0.12774458231415226im 0.0016860505408119453 - 0.018238778920018697im … 0.07972143921464787 + 0.019695724630572974im 0.14355807140869895 - 0.12267922792721934im; … ; -0.05023527303434085 - 0.07203731814137865im -0.050291808975553076 + 0.04544936237234225im … -0.01436195122492773 + 0.09796618087353304im 0.05721447087766396 - 0.06783149075890549im; 0.0033291321984192978 + 0.05036694598161838im 0.06974913996044778 + 0.05058334145391106im … 0.0042092579819279635 - 0.1051151822255272im -0.07276924237664437 - 0.05312451961833628im;;; 0.03674081474775055 - 0.14687544457125812im -0.002658528988338569 - 0.017832377372895346im … 0.03381227462170644 + 0.03511157251254252im 0.12356989604697984 - 0.08426225443354246im; -0.033175755701744754 - 0.02410240589095154im 0.09014447166543892 + 0.02876759847742144im … 0.11087771555661699 - 0.10415515276134182im -0.01171054780681769 - 0.17653228773931542im; … ; -0.14878478825778127 + 0.055351780037939405im 0.03342494075025297 + 0.09160794420517938im … 0.03047434310840862 - 0.05863123793231574im -0.15923329502583336 - 0.15517757729876783im; 0.08046177591965775 + 0.03809945902884504im 0.0779350445116504 - 0.03581459784679175im … -0.1061029643507674 - 0.07325964142297964im -0.08486201358325544 + 0.045885220588158894im;;; -0.08566079589031189 - 0.06358966022291782im 0.014236590543451146 + 0.054379517042955315im … 0.04590137707986033 - 0.012841577910861088im 0.004322713974344826 - 0.14319600656294257im; 0.04198651747021816 + 0.030929714855643713im 0.11697981319587941 - 0.032629930891038446im … -0.00025333849901957445 - 0.09944876571289091im -0.06952554834272062 - 0.03993258199625317im; … ; -0.002333171489159791 + 0.09488349140378355im 0.062010985644312094 - 0.0625427425810049im … -0.12506668575425126 - 0.14568831898935516im -0.23495416420124648 + 0.01745873146990428im; 0.04023013302335556 - 0.13386227718572224im -0.06323546002335373 - 0.06401158722595898im … -0.11836302509243311 + 0.016465662068571106im -0.005810892473704616 + 0.07162467666861477im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.589784542618633e-5 0.0011262712728436828 … 0.006697037550114461 0.0011262712728436896; 0.0011262712728436794 0.005274334457400883 … 0.005274334457400917 0.0011262712728436794; … ; 0.006697037550114459 0.005274334457400915 … 0.023244754191102963 0.012258986825284259; 0.001126271272843686 0.0011262712728436744 … 0.012258986825284257 0.0037700086299174837;;; 0.0011262712728436822 0.005274334457400894 … 0.005274334457400924 0.001126271272843687; 0.005274334457400893 0.014620065304782385 … 0.005274334457400917 0.0025880808748679545; … ; 0.005274334457400923 0.005274334457400921 … 0.01810768664619546 0.008922003044785983; 0.001126271272843685 0.0025880808748679493 … 0.008922003044785985 0.00258808087486797;;; 0.0066970375501144265 0.01641210910166271 … 0.0066970375501144526 0.0037700086299174776; 0.016412109101662707 0.03127783931602429 … 0.00892200304478595 0.008922003044785942; … ; 0.006697037550114452 0.00892200304478596 … 0.016476756359503887 0.00892200304478598; 0.0037700086299174776 0.008922003044785937 … 0.008922003044785983 0.003770008629917481;;; … ;;; 0.01985383985346225 0.01641210910166273 … 0.0371566736357211 0.027190800686638324; 0.016412109101662728 0.014620065304782402 … 0.032301272126506485 0.022322100931777698; … ; 0.037156673635721095 0.03230127212650649 … 0.04629698070147159 0.042636582731477954; 0.027190800686638324 0.02232210093177769 … 0.04263658273147795 0.03477222914204757;;; 0.006697037550114435 0.005274334457400896 … 0.023244754191102942 0.012258986825284231; 0.005274334457400892 0.005274334457400885 … 0.01810768664619542 0.008922003044785949; … ; 0.02324475419110294 0.018107686646195432 … 0.040371110335612484 0.031491603811432095; 0.012258986825284231 0.008922003044785944 … 0.03149160381143209 0.02004716343278186;;; 0.0011262712728436835 0.0011262712728436785 … 0.012258986825284243 0.0037700086299174785; 0.0011262712728436768 0.0025880808748679368 … 0.008922003044785961 0.002588080874867956; … ; 0.01225898682528424 0.008922003044785966 … 0.0314916038114321 0.02004716343278188; 0.0037700086299174767 0.002588080874867951 … 0.02004716343278188 0.008952603496801067;;;;], eigenvalues = [[-0.17836835653973043, 0.2624919449908897, 0.26249194499088974, 0.26249194499088996, 0.35469214816742756, 0.354692148167428, 0.3546921481675862], [-0.1275503761796266, 0.0647532059464336, 0.22545166517363308, 0.22545166517363324, 0.3219776496110539, 0.3892227690846397, 0.38922276908464015], [-0.10818729216552261, 0.07755003473381138, 0.17278328011428168, 0.1727832801142818, 0.2843518536198056, 0.330547648433147, 0.5267232426388827], [-0.05777325374486633, 0.01272478220501854, 0.09766073750108006, 0.18417825332927176, 0.3152284179598935, 0.4720312260199958, 0.4979135181326171]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930534777, n_iter = 10, ψ = Matrix{ComplexF64}[[0.3322745108920693 + 0.88954895123212im 1.2724952338432342e-13 - 1.7059165753497844e-13im … 1.9497673496945346e-11 - 3.93387325188221e-11im 5.2604243697628115e-8 - 1.1243256908764512e-7im; 0.09039634130542847 + 0.0412298274433897im 0.0658310780258464 - 0.23025702665403391im … -0.016284566567729124 - 0.2508376310415379im 0.26107749353919635 + 0.3023269914530328im; … ; -0.004114349177850849 - 0.01101473292770696im 0.020015362779601857 - 0.02838701339134419im … -0.009877394439020436 + 0.045716109125439955im -0.01856047743967087 - 0.08898748570238463im; 0.09039634130532359 + 0.04122982744344729im -0.11978669218187135 - 0.08169817238563643im … 0.1963000551799302 + 0.07892653681013151im -0.3768649029359923 - 0.11542492305862183im], [0.4225796325095191 + 0.8185994446180664im 0.08543564512206171 - 0.18418002665686342im … 1.877630413988189e-10 - 1.1214004854642612e-10im -2.9233549687502997e-11 + 9.768178149205928e-12im; 0.05959143771864437 + 0.019013686585204526im 0.0030983348433575625 + 0.00845981935584588im … -1.0572872865539578e-10 - 1.5943142594911034e-10im 9.524388730876946e-11 + 4.485049971174323e-11im; … ; -0.0022670628580570306 - 0.004391637111117183im -0.03557396928912855 + 0.0766894731419646im … -0.022245497136118085 + 0.09146329401210353im -0.03739775793770606 - 0.029152457119585674im; 0.11138053164189701 + 0.035537899426621986im -0.03443154031008966 - 0.09401327677385592im … 0.2164257737513734 + 0.3555373641272414im -0.20808494918904666 + 0.02578087841054877im], [0.5239458346733482 - 0.7629498179407095im -8.920144399612373e-15 - 1.2338908281583695e-14im … -5.727958617829497e-12 + 5.161317486682566e-11im -3.4911318778738065e-9 - 1.1178046758354898e-8im; -0.012514181088796279 - 0.06738149305741988im -0.00041141429682907177 + 0.052194986150093735im … -0.01063572624449573 - 0.023682124605239538im 4.1169574957189455e-5 - 0.0016363057027003105im; … ; -0.005997777395858168 + 0.008733733278122081im -6.229646579365104e-14 + 3.979127097383017e-14im … 3.668349753766995e-11 + 1.8251201867849048e-11im -0.01589174621918391 + 0.051803416204242475im; -0.029259859808954743 - 0.1575471080836643im 0.0023113323861462904 - 0.29323230333483125im … -0.15244141166275124 - 0.33943488212147205im 0.07319017135914911 + 0.13738948735940898im], [-0.7880589359077634 - 0.13372539911615872im 1.3327723059919872e-15 - 6.856811830486685e-16im … 0.1787381141698782 - 0.032530473861616026im 6.2861793359521795e-6 + 4.843163438045468e-7im; -0.31953585827907655 + 0.22682423679293803im 0.43768461332993663 - 0.44021517002997873im … -0.10357084603821988 + 0.1496598067251886im -3.861289717673374e-6 + 2.0846678693251026e-6im; … ; 0.013064409552498078 + 0.0022168943235397883im -0.0002538771261459375 + 7.31803881223887e-7im … -0.012840777990568064 + 0.002335105499236015im 0.04485375536057725 - 0.010644229976033264im; -0.054708947967565265 + 0.03883543911256665im -0.003746238895051466 + 0.003767898486571941im … -0.08166125174734626 + 0.11796649027415346im 0.24727317329800932 - 0.40114218623292053im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653973043, 0.2624919449908897, 0.26249194499088974, 0.26249194499088996, 0.35469214816742756, 0.354692148167428, 0.3546921481675862], [-0.1275503761796266, 0.0647532059464336, 0.22545166517363308, 0.22545166517363324, 0.3219776496110539, 0.3892227690846397, 0.38922276908464015], [-0.10818729216552261, 0.07755003473381138, 0.17278328011428168, 0.1727832801142818, 0.2843518536198056, 0.330547648433147, 0.5267232426388827], [-0.05777325374486633, 0.01272478220501854, 0.09766073750108006, 0.18417825332927176, 0.3152284179598935, 0.4720312260199958, 0.4979135181326171]], X = [[0.3322745108920693 + 0.88954895123212im 1.2724952338432342e-13 - 1.7059165753497844e-13im … 1.9497673496945346e-11 - 3.93387325188221e-11im 5.2604243697628115e-8 - 1.1243256908764512e-7im; 0.09039634130542847 + 0.0412298274433897im 0.0658310780258464 - 0.23025702665403391im … -0.016284566567729124 - 0.2508376310415379im 0.26107749353919635 + 0.3023269914530328im; … ; -0.004114349177850849 - 0.01101473292770696im 0.020015362779601857 - 0.02838701339134419im … -0.009877394439020436 + 0.045716109125439955im -0.01856047743967087 - 0.08898748570238463im; 0.09039634130532359 + 0.04122982744344729im -0.11978669218187135 - 0.08169817238563643im … 0.1963000551799302 + 0.07892653681013151im -0.3768649029359923 - 0.11542492305862183im], [0.4225796325095191 + 0.8185994446180664im 0.08543564512206171 - 0.18418002665686342im … 1.877630413988189e-10 - 1.1214004854642612e-10im -2.9233549687502997e-11 + 9.768178149205928e-12im; 0.05959143771864437 + 0.019013686585204526im 0.0030983348433575625 + 0.00845981935584588im … -1.0572872865539578e-10 - 1.5943142594911034e-10im 9.524388730876946e-11 + 4.485049971174323e-11im; … ; -0.0022670628580570306 - 0.004391637111117183im -0.03557396928912855 + 0.0766894731419646im … -0.022245497136118085 + 0.09146329401210353im -0.03739775793770606 - 0.029152457119585674im; 0.11138053164189701 + 0.035537899426621986im -0.03443154031008966 - 0.09401327677385592im … 0.2164257737513734 + 0.3555373641272414im -0.20808494918904666 + 0.02578087841054877im], [0.5239458346733482 - 0.7629498179407095im -8.920144399612373e-15 - 1.2338908281583695e-14im … -5.727958617829497e-12 + 5.161317486682566e-11im -3.4911318778738065e-9 - 1.1178046758354898e-8im; -0.012514181088796279 - 0.06738149305741988im -0.00041141429682907177 + 0.052194986150093735im … -0.01063572624449573 - 0.023682124605239538im 4.1169574957189455e-5 - 0.0016363057027003105im; … ; -0.005997777395858168 + 0.008733733278122081im -6.229646579365104e-14 + 3.979127097383017e-14im … 3.668349753766995e-11 + 1.8251201867849048e-11im -0.01589174621918391 + 0.051803416204242475im; -0.029259859808954743 - 0.1575471080836643im 0.0023113323861462904 - 0.29323230333483125im … -0.15244141166275124 - 0.33943488212147205im 0.07319017135914911 + 0.13738948735940898im], [-0.7880589359077634 - 0.13372539911615872im 1.3327723059919872e-15 - 6.856811830486685e-16im … 0.1787381141698782 - 0.032530473861616026im 6.2861793359521795e-6 + 4.843163438045468e-7im; -0.31953585827907655 + 0.22682423679293803im 0.43768461332993663 - 0.44021517002997873im … -0.10357084603821988 + 0.1496598067251886im -3.861289717673374e-6 + 2.0846678693251026e-6im; … ; 0.013064409552498078 + 0.0022168943235397883im -0.0002538771261459375 + 7.31803881223887e-7im … -0.012840777990568064 + 0.002335105499236015im 0.04485375536057725 - 0.010644229976033264im; -0.054708947967565265 + 0.03883543911256665im -0.003746238895051466 + 0.003767898486571941im … -0.08166125174734626 + 0.11796649027415346im 0.24727317329800932 - 0.40114218623292053im]], residual_norms = [[0.0, 0.0, 4.281486873386219e-12, 0.0, 2.772858671978619e-10, 2.0138156999985426e-10, 5.711436757537871e-7], [0.0, 0.0, 8.286683228624098e-13, 8.872348467211364e-13, 1.696762924390498e-10, 2.7997063392516053e-9, 2.8735983903217982e-9], [1.0947299658883417e-12, 1.4463182103315824e-12, 2.0536623571234748e-12, 2.5302073600730186e-12, 4.6614893731699376e-11, 1.1358683394569348e-9, 8.849763433025999e-7], [7.537781272229914e-13, 4.5333173510448807e-13, 1.2862273783730894e-12, 2.8086676082339515e-12, 1.6154455109332956e-10, 0.00010310085879452018, 2.8206648347320683e-5]], n_iter = [4, 4, 3, 3], converged = 1, n_matvec = 119)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21070703476984715, 0.027623100910172057, 0.002309078490720002, 0.000257588184061915, 9.443885967491963e-6, 9.490955404518583e-7, 4.0562376637691114e-8, 2.6610903499322875e-9, 1.502996917639449e-10, 2.5942853551343158e-11], history_Etot = [-7.905260801817881, -7.9105444526470095, -7.910593449931261, -7.910594393242157, -7.910594396442104, -7.910594396488412, -7.910594396488505, -7.910594396488506, -7.910594396488502, -7.910594396488504], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009d33bf1b)