Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model. Values up to1e-2atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solvertoself_consistent_field, e.g.solver = scf_anderson_solver(; m=15)(::DFTK.var"#anderson#890"{DFTK.var"#anderson#889#891"{Int64, Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)All keyword arguments are passed through to
DFTK.AndersonAcceleration.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiffparameter of theAdaptiveDiagtolalgorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBandsalgorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)AdaptiveBands(4, 7, 1.0e-6, 0.01)Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptiveinstead ofself_consistent_field:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0403228082272833 - 0.0002731380421234046im -0.07253970197909669 + 0.025039825995879034im … 0.0009987243475443196 - 0.08320501932606647im -0.02199366401856895 + 0.024690656729653798im; -0.0540094820188005 + 0.0161448896862581im -0.04667798270470148 + 0.08871054455220231im … -0.05045931400208545 + 0.0017202475507739762im -0.030369218251377263 + 0.04477833234202306im; … ; -0.0014126749022341384 + 0.08600656002271152im 0.026870769661126698 + 0.009540534410631204im … 0.10144947825103579 + 0.027234562873965668im -0.03750015649827208 + 0.044872669374615315im; 0.029407735509575747 + 0.0545306958817769im -0.016041855920378614 - 0.008791540171059521im … 0.0536243902741272 - 0.018909115327883738im -0.015562841591459509 + 0.05361309514242074im;;; 0.04327810751225512 + 0.02927040277982363im 0.01986960520638618 + 0.009987818198022894im … 0.011669387452521645 + 0.04943906045891503im 0.1032598403874736 + 0.06870608359619819im; 0.017567440920071425 - 0.07482126419308112im -0.007561108514178717 - 0.03293351831206499im … 0.08997627323491653 + 0.07909823089637098im 0.1212319943178182 - 0.022809293410206627im; … ; 0.04201925963293088 + 0.028238863962229667im -0.02428839365951545 - 0.006854823068035861im … 0.02704822270150823 + 0.02078957461019089im 0.018873525766430893 + 0.10133016822761604im; 0.026453573672815818 + 0.027468659169716258im 0.00702610349267304 + 0.036278231003777126im … 0.021487784624345797 + 0.020922963724013432im 0.06410526494807611 + 0.09941009853515637im;;; 0.06067419507071889 - 0.021960516223552426im 0.00977978761798997 - 0.027348177342641708im … 0.12839212462292296 + 0.06761181955310737im 0.1432585127149873 - 0.010283265030134815im; -0.014757439638206084 - 0.035455732273817514im -0.028408165146737063 - 0.0009047816728392916im … 0.1675272414944207 - 0.040144488987668744im 0.07301836533307791 - 0.11237580010567963im; … ; 0.0037221014223488107 + 0.015889891837338518im -0.004431639397253145 + 0.03515289511234973im … 0.012669004585211554 + 0.03277491701622827im 0.04332128206939314 + 0.04606385745267576im; 0.058273600324998655 + 0.03535834618326246im 0.04784170070514964 + 0.0058905307350514205im … 0.04477959619207712 + 0.05510246410258296im 0.0959061751942641 + 0.05089135426830456im;;; … ;;; -0.045900431325256556 + 0.01276103110559355im -0.019230850599356145 + 0.047138311717092235im … 0.0039913387749398385 + 0.05414267478614596im -0.0023028945840628118 - 0.000483455049365724im; -0.02026281931173532 + 0.09090160828748345im 0.02200841767121374 + 0.05286449407371172im … -0.014025616997024098 + 0.02163512373554254im -0.04777742892467288 + 0.046526410116031064im; … ; 0.028643551364823668 + 0.049250162248583355im 0.002696783775195162 - 0.007519749902290516im … -0.07635460617081617 - 0.002523717350499402im -0.05271805776646121 + 0.08162788493030858im; 0.020617497061929172 - 0.012838836854349053im -0.02734372630670951 - 0.00017785454671490238im … -0.04800017294562412 + 0.07820107399935897im 0.025782109595038554 + 0.05582011800066705im;;; -0.04653656259331593 + 0.10167069749690989im 0.04200169846763268 + 0.07534571779625464im … -0.0556585207093786 + 0.01632476854962657im -0.10393543418401868 + 0.042778886782671124im; 0.035172351242186095 + 0.06699714549549135im 0.009035517680716604 - 0.005068659968997033im … -0.07995225720016641 + 0.06592763981004716im -0.029310758717245564 + 0.07858894216461701im; … ; 0.026811974419691128 - 0.01659238665893625im -0.03704323500778835 - 0.0006911147261376635im … -0.05724060974636083 + 0.11636464967617972im 0.0511438923162495 + 0.09553206599925591im; -0.09580662852953176 + 0.004103970356215583im -0.04098932957211413 + 0.07882725823474013im … 0.0008092948444613744 + 0.050413018786443775im -0.008937829994577998 - 0.01363982505836828im;;; 0.01471031297368851 + 0.04788741186783501im -0.016821014443352048 - 0.034327875113567365im … -0.006301367329062113 + 0.000393397575060038im -0.03276418494975469 + 0.002809536974266544im; -0.06298004853934544 - 0.012929731164848149im -0.11647731090258215 + 0.02978932170306902im … -0.030054105239123958 + 0.003681744985167393im -0.05482137817609484 - 0.014753611203958114im; … ; -0.06232868467655721 + 0.01525723426829989im -0.012917827761208926 + 0.05227584247603023im … 0.07890598971024365 + 0.1290298130076643im 0.04679942542396959 + 0.003343550707173751im; -0.04474593814345736 + 0.08328812039168562im 0.04480939695002798 + 0.06885805977289197im … 0.058928483152155486 + 0.023054713484402665im -0.07410613141085037 + 0.02352178033093793im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0403228082272833 - 0.0002731380421234046im -0.07253970197909669 + 0.025039825995879034im … 0.0009987243475443196 - 0.08320501932606647im -0.02199366401856895 + 0.024690656729653798im; -0.0540094820188005 + 0.0161448896862581im -0.04667798270470148 + 0.08871054455220231im … -0.05045931400208545 + 0.0017202475507739762im -0.030369218251377263 + 0.04477833234202306im; … ; -0.0014126749022341384 + 0.08600656002271152im 0.026870769661126698 + 0.009540534410631204im … 0.10144947825103579 + 0.027234562873965668im -0.03750015649827208 + 0.044872669374615315im; 0.029407735509575747 + 0.0545306958817769im -0.016041855920378614 - 0.008791540171059521im … 0.0536243902741272 - 0.018909115327883738im -0.015562841591459509 + 0.05361309514242074im;;; 0.04327810751225512 + 0.02927040277982363im 0.01986960520638618 + 0.009987818198022894im … 0.011669387452521645 + 0.04943906045891503im 0.1032598403874736 + 0.06870608359619819im; 0.017567440920071425 - 0.07482126419308112im -0.007561108514178717 - 0.03293351831206499im … 0.08997627323491653 + 0.07909823089637098im 0.1212319943178182 - 0.022809293410206627im; … ; 0.04201925963293088 + 0.028238863962229667im -0.02428839365951545 - 0.006854823068035861im … 0.02704822270150823 + 0.02078957461019089im 0.018873525766430893 + 0.10133016822761604im; 0.026453573672815818 + 0.027468659169716258im 0.00702610349267304 + 0.036278231003777126im … 0.021487784624345797 + 0.020922963724013432im 0.06410526494807611 + 0.09941009853515637im;;; 0.06067419507071889 - 0.021960516223552426im 0.00977978761798997 - 0.027348177342641708im … 0.12839212462292296 + 0.06761181955310737im 0.1432585127149873 - 0.010283265030134815im; -0.014757439638206084 - 0.035455732273817514im -0.028408165146737063 - 0.0009047816728392916im … 0.1675272414944207 - 0.040144488987668744im 0.07301836533307791 - 0.11237580010567963im; … ; 0.0037221014223488107 + 0.015889891837338518im -0.004431639397253145 + 0.03515289511234973im … 0.012669004585211554 + 0.03277491701622827im 0.04332128206939314 + 0.04606385745267576im; 0.058273600324998655 + 0.03535834618326246im 0.04784170070514964 + 0.0058905307350514205im … 0.04477959619207712 + 0.05510246410258296im 0.0959061751942641 + 0.05089135426830456im;;; … ;;; -0.045900431325256556 + 0.01276103110559355im -0.019230850599356145 + 0.047138311717092235im … 0.0039913387749398385 + 0.05414267478614596im -0.0023028945840628118 - 0.000483455049365724im; -0.02026281931173532 + 0.09090160828748345im 0.02200841767121374 + 0.05286449407371172im … -0.014025616997024098 + 0.02163512373554254im -0.04777742892467288 + 0.046526410116031064im; … ; 0.028643551364823668 + 0.049250162248583355im 0.002696783775195162 - 0.007519749902290516im … -0.07635460617081617 - 0.002523717350499402im -0.05271805776646121 + 0.08162788493030858im; 0.020617497061929172 - 0.012838836854349053im -0.02734372630670951 - 0.00017785454671490238im … -0.04800017294562412 + 0.07820107399935897im 0.025782109595038554 + 0.05582011800066705im;;; -0.04653656259331593 + 0.10167069749690989im 0.04200169846763268 + 0.07534571779625464im … -0.0556585207093786 + 0.01632476854962657im -0.10393543418401868 + 0.042778886782671124im; 0.035172351242186095 + 0.06699714549549135im 0.009035517680716604 - 0.005068659968997033im … -0.07995225720016641 + 0.06592763981004716im -0.029310758717245564 + 0.07858894216461701im; … ; 0.026811974419691128 - 0.01659238665893625im -0.03704323500778835 - 0.0006911147261376635im … -0.05724060974636083 + 0.11636464967617972im 0.0511438923162495 + 0.09553206599925591im; -0.09580662852953176 + 0.004103970356215583im -0.04098932957211413 + 0.07882725823474013im … 0.0008092948444613744 + 0.050413018786443775im -0.008937829994577998 - 0.01363982505836828im;;; 0.01471031297368851 + 0.04788741186783501im -0.016821014443352048 - 0.034327875113567365im … -0.006301367329062113 + 0.000393397575060038im -0.03276418494975469 + 0.002809536974266544im; -0.06298004853934544 - 0.012929731164848149im -0.11647731090258215 + 0.02978932170306902im … -0.030054105239123958 + 0.003681744985167393im -0.05482137817609484 - 0.014753611203958114im; … ; -0.06232868467655721 + 0.01525723426829989im -0.012917827761208926 + 0.05227584247603023im … 0.07890598971024365 + 0.1290298130076643im 0.04679942542396959 + 0.003343550707173751im; -0.04474593814345736 + 0.08328812039168562im 0.04480939695002798 + 0.06885805977289197im … 0.058928483152155486 + 0.023054713484402665im -0.07410613141085037 + 0.02352178033093793im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0403228082272833 - 0.0002731380421234046im -0.07253970197909669 + 0.025039825995879034im … 0.0009987243475443196 - 0.08320501932606647im -0.02199366401856895 + 0.024690656729653798im; -0.0540094820188005 + 0.0161448896862581im -0.04667798270470148 + 0.08871054455220231im … -0.05045931400208545 + 0.0017202475507739762im -0.030369218251377263 + 0.04477833234202306im; … ; -0.0014126749022341384 + 0.08600656002271152im 0.026870769661126698 + 0.009540534410631204im … 0.10144947825103579 + 0.027234562873965668im -0.03750015649827208 + 0.044872669374615315im; 0.029407735509575747 + 0.0545306958817769im -0.016041855920378614 - 0.008791540171059521im … 0.0536243902741272 - 0.018909115327883738im -0.015562841591459509 + 0.05361309514242074im;;; 0.04327810751225512 + 0.02927040277982363im 0.01986960520638618 + 0.009987818198022894im … 0.011669387452521645 + 0.04943906045891503im 0.1032598403874736 + 0.06870608359619819im; 0.017567440920071425 - 0.07482126419308112im -0.007561108514178717 - 0.03293351831206499im … 0.08997627323491653 + 0.07909823089637098im 0.1212319943178182 - 0.022809293410206627im; … ; 0.04201925963293088 + 0.028238863962229667im -0.02428839365951545 - 0.006854823068035861im … 0.02704822270150823 + 0.02078957461019089im 0.018873525766430893 + 0.10133016822761604im; 0.026453573672815818 + 0.027468659169716258im 0.00702610349267304 + 0.036278231003777126im … 0.021487784624345797 + 0.020922963724013432im 0.06410526494807611 + 0.09941009853515637im;;; 0.06067419507071889 - 0.021960516223552426im 0.00977978761798997 - 0.027348177342641708im … 0.12839212462292296 + 0.06761181955310737im 0.1432585127149873 - 0.010283265030134815im; -0.014757439638206084 - 0.035455732273817514im -0.028408165146737063 - 0.0009047816728392916im … 0.1675272414944207 - 0.040144488987668744im 0.07301836533307791 - 0.11237580010567963im; … ; 0.0037221014223488107 + 0.015889891837338518im -0.004431639397253145 + 0.03515289511234973im … 0.012669004585211554 + 0.03277491701622827im 0.04332128206939314 + 0.04606385745267576im; 0.058273600324998655 + 0.03535834618326246im 0.04784170070514964 + 0.0058905307350514205im … 0.04477959619207712 + 0.05510246410258296im 0.0959061751942641 + 0.05089135426830456im;;; … ;;; -0.045900431325256556 + 0.01276103110559355im -0.019230850599356145 + 0.047138311717092235im … 0.0039913387749398385 + 0.05414267478614596im -0.0023028945840628118 - 0.000483455049365724im; -0.02026281931173532 + 0.09090160828748345im 0.02200841767121374 + 0.05286449407371172im … -0.014025616997024098 + 0.02163512373554254im -0.04777742892467288 + 0.046526410116031064im; … ; 0.028643551364823668 + 0.049250162248583355im 0.002696783775195162 - 0.007519749902290516im … -0.07635460617081617 - 0.002523717350499402im -0.05271805776646121 + 0.08162788493030858im; 0.020617497061929172 - 0.012838836854349053im -0.02734372630670951 - 0.00017785454671490238im … -0.04800017294562412 + 0.07820107399935897im 0.025782109595038554 + 0.05582011800066705im;;; -0.04653656259331593 + 0.10167069749690989im 0.04200169846763268 + 0.07534571779625464im … -0.0556585207093786 + 0.01632476854962657im -0.10393543418401868 + 0.042778886782671124im; 0.035172351242186095 + 0.06699714549549135im 0.009035517680716604 - 0.005068659968997033im … -0.07995225720016641 + 0.06592763981004716im -0.029310758717245564 + 0.07858894216461701im; … ; 0.026811974419691128 - 0.01659238665893625im -0.03704323500778835 - 0.0006911147261376635im … -0.05724060974636083 + 0.11636464967617972im 0.0511438923162495 + 0.09553206599925591im; -0.09580662852953176 + 0.004103970356215583im -0.04098932957211413 + 0.07882725823474013im … 0.0008092948444613744 + 0.050413018786443775im -0.008937829994577998 - 0.01363982505836828im;;; 0.01471031297368851 + 0.04788741186783501im -0.016821014443352048 - 0.034327875113567365im … -0.006301367329062113 + 0.000393397575060038im -0.03276418494975469 + 0.002809536974266544im; -0.06298004853934544 - 0.012929731164848149im -0.11647731090258215 + 0.02978932170306902im … -0.030054105239123958 + 0.003681744985167393im -0.05482137817609484 - 0.014753611203958114im; … ; -0.06232868467655721 + 0.01525723426829989im -0.012917827761208926 + 0.05227584247603023im … 0.07890598971024365 + 0.1290298130076643im 0.04679942542396959 + 0.003343550707173751im; -0.04474593814345736 + 0.08328812039168562im 0.04480939695002798 + 0.06885805977289197im … 0.058928483152155486 + 0.023054713484402665im -0.07410613141085037 + 0.02352178033093793im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872573 -11.100308396741813 … -8.289845772411823 -11.100308396741873; -11.100308396741813 -9.130057825947189 … -9.130057795895896 -11.100308356758836; … ; -8.289845772411823 -9.130057795895896 … -4.149589921642974 -6.287956198198772; -11.100308396741871 -11.100308356758838 … -6.287956198198773 -9.111848223576672;;; -11.100308396741815 -9.130057825947187 … -9.130057795895897 -11.100308356758838; -9.130057825947189 -6.90315948198168 … -9.13005782729687 -10.053883826551463; … ; -9.130057795895896 -9.13005782729687 … -5.2943536692139705 -7.547399206521043; -11.100308356758836 -10.053883826551463 … -7.547399206521044 -10.053883826551568;;; -8.289845772412122 -6.307621931516292 … -8.289845781011076 -9.111848193525342; -6.307621931516294 -4.516655665815459 … -7.547399237610875 -7.547399206521275; … ; -8.289845781011074 -7.5473992376108745 … -5.768969083580766 -7.547399237610946; -9.111848193525342 -7.547399206521275 … -7.547399237610947 -9.111848224926579;;; … ;;; -5.301031718249408 -6.3076219557885 … -2.5497035732759006 -3.8495821793875638; -6.3076219557885 -6.903159495208509 … -3.3290606985460633 -4.878419358630297; … ; -2.5497035732759 -3.329060698546064 … -1.2567984709025164 -1.8141947460410377; -3.849582179387564 -4.878419358630299 … -1.8141947460410377 -2.7147673353224926;;; -8.289845772411825 -9.130057795895896 … -4.149589921642976 -6.2879561981987715; -9.130057795895897 -9.130057827296868 … -5.294353669213969 -7.5473992065210425; … ; -4.149589921642976 -5.29435366921397 … -1.90944923991528 -2.8946123678521185; -6.287956198198772 -7.5473992065210425 … -2.894612367852118 -4.4855427593716835;;; -11.100308396741873 -11.100308356758838 … -6.287956198198773 -9.11184822357667; -11.100308356758836 -10.053883826551463 … -7.547399206521045 -10.053883826551568; … ; -6.2879561981987715 -7.547399206521045 … -2.894612367852118 -4.485542759371683; -9.111848223576672 -10.053883826551568 … -4.485542759371684 -6.871104500134626]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0403228082272833 - 0.0002731380421234046im -0.07253970197909669 + 0.025039825995879034im … 0.0009987243475443196 - 0.08320501932606647im -0.02199366401856895 + 0.024690656729653798im; -0.0540094820188005 + 0.0161448896862581im -0.04667798270470148 + 0.08871054455220231im … -0.05045931400208545 + 0.0017202475507739762im -0.030369218251377263 + 0.04477833234202306im; … ; -0.0014126749022341384 + 0.08600656002271152im 0.026870769661126698 + 0.009540534410631204im … 0.10144947825103579 + 0.027234562873965668im -0.03750015649827208 + 0.044872669374615315im; 0.029407735509575747 + 0.0545306958817769im -0.016041855920378614 - 0.008791540171059521im … 0.0536243902741272 - 0.018909115327883738im -0.015562841591459509 + 0.05361309514242074im;;; 0.04327810751225512 + 0.02927040277982363im 0.01986960520638618 + 0.009987818198022894im … 0.011669387452521645 + 0.04943906045891503im 0.1032598403874736 + 0.06870608359619819im; 0.017567440920071425 - 0.07482126419308112im -0.007561108514178717 - 0.03293351831206499im … 0.08997627323491653 + 0.07909823089637098im 0.1212319943178182 - 0.022809293410206627im; … ; 0.04201925963293088 + 0.028238863962229667im -0.02428839365951545 - 0.006854823068035861im … 0.02704822270150823 + 0.02078957461019089im 0.018873525766430893 + 0.10133016822761604im; 0.026453573672815818 + 0.027468659169716258im 0.00702610349267304 + 0.036278231003777126im … 0.021487784624345797 + 0.020922963724013432im 0.06410526494807611 + 0.09941009853515637im;;; 0.06067419507071889 - 0.021960516223552426im 0.00977978761798997 - 0.027348177342641708im … 0.12839212462292296 + 0.06761181955310737im 0.1432585127149873 - 0.010283265030134815im; -0.014757439638206084 - 0.035455732273817514im -0.028408165146737063 - 0.0009047816728392916im … 0.1675272414944207 - 0.040144488987668744im 0.07301836533307791 - 0.11237580010567963im; … ; 0.0037221014223488107 + 0.015889891837338518im -0.004431639397253145 + 0.03515289511234973im … 0.012669004585211554 + 0.03277491701622827im 0.04332128206939314 + 0.04606385745267576im; 0.058273600324998655 + 0.03535834618326246im 0.04784170070514964 + 0.0058905307350514205im … 0.04477959619207712 + 0.05510246410258296im 0.0959061751942641 + 0.05089135426830456im;;; … ;;; -0.045900431325256556 + 0.01276103110559355im -0.019230850599356145 + 0.047138311717092235im … 0.0039913387749398385 + 0.05414267478614596im -0.0023028945840628118 - 0.000483455049365724im; -0.02026281931173532 + 0.09090160828748345im 0.02200841767121374 + 0.05286449407371172im … -0.014025616997024098 + 0.02163512373554254im -0.04777742892467288 + 0.046526410116031064im; … ; 0.028643551364823668 + 0.049250162248583355im 0.002696783775195162 - 0.007519749902290516im … -0.07635460617081617 - 0.002523717350499402im -0.05271805776646121 + 0.08162788493030858im; 0.020617497061929172 - 0.012838836854349053im -0.02734372630670951 - 0.00017785454671490238im … -0.04800017294562412 + 0.07820107399935897im 0.025782109595038554 + 0.05582011800066705im;;; -0.04653656259331593 + 0.10167069749690989im 0.04200169846763268 + 0.07534571779625464im … -0.0556585207093786 + 0.01632476854962657im -0.10393543418401868 + 0.042778886782671124im; 0.035172351242186095 + 0.06699714549549135im 0.009035517680716604 - 0.005068659968997033im … -0.07995225720016641 + 0.06592763981004716im -0.029310758717245564 + 0.07858894216461701im; … ; 0.026811974419691128 - 0.01659238665893625im -0.03704323500778835 - 0.0006911147261376635im … -0.05724060974636083 + 0.11636464967617972im 0.0511438923162495 + 0.09553206599925591im; -0.09580662852953176 + 0.004103970356215583im -0.04098932957211413 + 0.07882725823474013im … 0.0008092948444613744 + 0.050413018786443775im -0.008937829994577998 - 0.01363982505836828im;;; 0.01471031297368851 + 0.04788741186783501im -0.016821014443352048 - 0.034327875113567365im … -0.006301367329062113 + 0.000393397575060038im -0.03276418494975469 + 0.002809536974266544im; -0.06298004853934544 - 0.012929731164848149im -0.11647731090258215 + 0.02978932170306902im … -0.030054105239123958 + 0.003681744985167393im -0.05482137817609484 - 0.014753611203958114im; … ; -0.06232868467655721 + 0.01525723426829989im -0.012917827761208926 + 0.05227584247603023im … 0.07890598971024365 + 0.1290298130076643im 0.04679942542396959 + 0.003343550707173751im; -0.04474593814345736 + 0.08328812039168562im 0.04480939695002798 + 0.06885805977289197im … 0.058928483152155486 + 0.023054713484402665im -0.07410613141085037 + 0.02352178033093793im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488507), converged = true, ρ = [7.589784543504417e-5 0.0011262712728203604 … 0.006697037550018259 0.0011262712728203604; 0.0011262712728203604 0.005274334457319027 … 0.0052743344573190545 0.0011262712728203636; … ; 0.006697037550018263 0.005274334457319059 … 0.023244754190966745 0.012258986825159818; 0.0011262712728203703 0.0011262712728203619 … 0.012258986825159817 0.0037700086298481906;;; 0.0011262712728203573 0.005274334457319026 … 0.005274334457319059 0.0011262712728203645; 0.005274334457319025 0.01462006530463359 … 0.005274334457319054 0.0025880808748167425; … ; 0.005274334457319059 0.005274334457319054 … 0.01810768664604985 0.008922003044672923; 0.001126271272820368 0.0025880808748167407 … 0.008922003044672921 0.0025880808748167585;;; 0.006697037550018224 0.016412109101508966 … 0.006697037550018254 0.0037700086298481685; 0.016412109101508966 0.03127783931583019 … 0.008922003044672893 0.008922003044672876; … ; 0.006697037550018256 0.008922003044672897 … 0.016476756359356786 0.008922003044672921; 0.003770008629848172 0.00892200304467288 … 0.00892200304467292 0.003770008629848187;;; … ;;; 0.019853839853307617 0.01641210910150898 … 0.037156673635606416 0.027190800686494; 0.016412109101508976 0.014620065304633606 … 0.032301272126360685 0.022322100931618825; … ; 0.03715667363560642 0.03230127212636069 … 0.04629698070142586 0.04263658273140089; 0.027190800686494005 0.022322100931618828 … 0.04263658273140089 0.03477222914193259;;; 0.006697037550018234 0.005274334457319038 … 0.023244754190966728 0.012258986825159782; 0.005274334457319038 0.005274334457319027 … 0.01810768664604982 0.008922003044672883; … ; 0.02324475419096673 0.01810768664604983 … 0.04037111033553511 0.03149160381131994; 0.012258986825159785 0.008922003044672886 … 0.031491603811319935 0.020047163432652518;;; 0.00112627127282036 0.0011262712728203578 … 0.012258986825159803 0.0037700086298481763; 0.0011262712728203582 0.002588080874816727 … 0.0089220030446729 0.0025880808748167446; … ; 0.012258986825159803 0.008922003044672904 … 0.03149160381131994 0.02004716343265253; 0.0037700086298481797 0.002588080874816743 … 0.020047163432652528 0.008952603496694073;;;;], eigenvalues = [[-0.17836835654032032, 0.26249194499029976, 0.2624919449903002, 0.2624919449903006, 0.3546921481670969, 0.35469214816709693, 0.3546921481671749], [-0.1275503761801869, 0.06475320594586079, 0.22545166517310045, 0.2254516651731012, 0.3219776496105349, 0.3892227690842195, 0.38922276908422], [-0.10818729216607961, 0.07755003473332922, 0.17278328011374613, 0.17278328011374627, 0.28435185361907406, 0.3305476484323802, 0.5267232426382296], [-0.057773253745375425, 0.01272478220450389, 0.09766073750040852, 0.18417825332874194, 0.3152284179591811, 0.47203121817637755, 0.4979135175818161]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993046873, n_iter = 10, ψ = Matrix{ComplexF64}[[0.25821696644818726 + 0.9137984928119777im 1.924658580841085e-13 - 1.7348941502891965e-14im … -2.1763107588205362e-11 - 3.232467694290135e-12im -2.5193748491054576e-8 - 3.725750870992044e-9im; 0.08671130711997205 + 0.048503055676442156im 0.12299805664112833 + 0.11518122252848213im … -0.22785054595898688 + 0.38167390956257446im 0.16928682090087918 + 0.04916278000561542im; … ; -0.0031973405385129937 - 0.011314999960614427im -0.03942310093006603 + 0.0007755021946258602im … 0.039754132943968366 - 0.0004294825925520422im 0.0012663236973516397 - 0.009238787075669922im; 0.08671130711983752 + 0.04850305567652158im -0.3720833352939104 + 0.14390033980322486im … 0.005411611850889059 + 0.14331662524838795im 0.12199664254976327 - 0.01315040466532806im], [0.9208632144052331 - 0.026259034567283207im 0.16837307583303115 + 0.11345500875355237im … 3.177010966510969e-10 + 7.980214073279696e-10im 4.835936653100808e-10 + 7.672988598829241e-10im; 0.042951698306927424 - 0.04547319363632881im -0.008843012237282242 + 0.0017231822014567673im … -3.679521417567403e-10 + 1.501212048892006e-12im -3.2633418605177336e-10 - 7.545872300324881e-11im; … ; -0.004940263633546273 + 0.00014087494374073788im -0.07010772400915838 - 0.047240762228752856im … -0.014324072114653032 + 0.07518414890407212im 0.0374679155305618 - 0.06202559002199878im; 0.08027970419053715 - 0.08499255390643837im 0.09827166775589055 - 0.019149582092748373im … 0.19029338941907267 + 0.2798685784762568im -0.07678537236053341 - 0.31108992910817246im], [-0.8997893061891538 + 0.21677376878908164im 1.3468998042420745e-14 - 7.760575935717713e-15im … 6.599506972859337e-12 - 7.923456629633382e-12im -1.5468594941590392e-8 - 9.050059570685256e-9im; -0.03576250071090743 + 0.05846292738038707im 0.022571262325590712 - 0.04706404102881234im … 0.01297905499809429 - 0.022483456203271492im 0.014622874444181056 + 0.010270542231754116im; … ; 0.010300179149401782 - 0.002481479428626412im -5.0663552257660425e-14 + 1.405949046804681e-14im … 1.0110656736177256e-10 - 8.30142322424748e-11im 0.00405971525743757 - 0.05585617604676163im; -0.0836175974911906 + 0.1366942868275783im -0.1268057284634955 + 0.2644065680070221im … 0.18602824534753426 - 0.32225442610248684im -0.10061793970636627 - 0.11862870936431358im], [0.7988680079309751 - 0.027005087251145105im 7.251784355633098e-16 - 1.5710745071506475e-15im … 0.18043787599793928 - 0.020819584922013825im 1.0235407804744407e-6 + 7.82355061329271e-8im; 0.26756571083046604 - 0.28628829789300914im -0.384490490794575 - 0.48736462649539186im … -0.1130892845780817 + 0.14258985443955738im -4.177871778732048e-7 - 9.204433474634034e-8im; … ; -0.013243601916594686 + 0.0004476892574926303im -2.974985347510955e-5 + 0.00025212908778515254im … -0.012964046397201362 + 0.0014956124406891487im 0.04107719526382722 + 0.02092229926957427im; 0.04581094162814783 - 0.049016506871866435im 0.0032909386977146827 + 0.004171461057262828im … -0.0890973393566363 + 0.11233657938670114im 0.44814118097246375 - 0.1456815108515671im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835654032032, 0.26249194499029976, 0.2624919449903002, 0.2624919449903006, 0.3546921481670969, 0.35469214816709693, 0.3546921481671749], [-0.1275503761801869, 0.06475320594586079, 0.22545166517310045, 0.2254516651731012, 0.3219776496105349, 0.3892227690842195, 0.38922276908422], [-0.10818729216607961, 0.07755003473332922, 0.17278328011374613, 0.17278328011374627, 0.28435185361907406, 0.3305476484323802, 0.5267232426382296], [-0.057773253745375425, 0.01272478220450389, 0.09766073750040852, 0.18417825332874194, 0.3152284179591811, 0.47203121817637755, 0.4979135175818161]], X = [[0.25821696644818726 + 0.9137984928119777im 1.924658580841085e-13 - 1.7348941502891965e-14im … -2.1763107588205362e-11 - 3.232467694290135e-12im -2.5193748491054576e-8 - 3.725750870992044e-9im; 0.08671130711997205 + 0.048503055676442156im 0.12299805664112833 + 0.11518122252848213im … -0.22785054595898688 + 0.38167390956257446im 0.16928682090087918 + 0.04916278000561542im; … ; -0.0031973405385129937 - 0.011314999960614427im -0.03942310093006603 + 0.0007755021946258602im … 0.039754132943968366 - 0.0004294825925520422im 0.0012663236973516397 - 0.009238787075669922im; 0.08671130711983752 + 0.04850305567652158im -0.3720833352939104 + 0.14390033980322486im … 0.005411611850889059 + 0.14331662524838795im 0.12199664254976327 - 0.01315040466532806im], [0.9208632144052331 - 0.026259034567283207im 0.16837307583303115 + 0.11345500875355237im … 3.177010966510969e-10 + 7.980214073279696e-10im 4.835936653100808e-10 + 7.672988598829241e-10im; 0.042951698306927424 - 0.04547319363632881im -0.008843012237282242 + 0.0017231822014567673im … -3.679521417567403e-10 + 1.501212048892006e-12im -3.2633418605177336e-10 - 7.545872300324881e-11im; … ; -0.004940263633546273 + 0.00014087494374073788im -0.07010772400915838 - 0.047240762228752856im … -0.014324072114653032 + 0.07518414890407212im 0.0374679155305618 - 0.06202559002199878im; 0.08027970419053715 - 0.08499255390643837im 0.09827166775589055 - 0.019149582092748373im … 0.19029338941907267 + 0.2798685784762568im -0.07678537236053341 - 0.31108992910817246im], [-0.8997893061891538 + 0.21677376878908164im 1.3468998042420745e-14 - 7.760575935717713e-15im … 6.599506972859337e-12 - 7.923456629633382e-12im -1.5468594941590392e-8 - 9.050059570685256e-9im; -0.03576250071090743 + 0.05846292738038707im 0.022571262325590712 - 0.04706404102881234im … 0.01297905499809429 - 0.022483456203271492im 0.014622874444181056 + 0.010270542231754116im; … ; 0.010300179149401782 - 0.002481479428626412im -5.0663552257660425e-14 + 1.405949046804681e-14im … 1.0110656736177256e-10 - 8.30142322424748e-11im 0.00405971525743757 - 0.05585617604676163im; -0.0836175974911906 + 0.1366942868275783im -0.1268057284634955 + 0.2644065680070221im … 0.18602824534753426 - 0.32225442610248684im -0.10061793970636627 - 0.11862870936431358im], [0.7988680079309751 - 0.027005087251145105im 7.251784355633098e-16 - 1.5710745071506475e-15im … 0.18043787599793928 - 0.020819584922013825im 1.0235407804744407e-6 + 7.82355061329271e-8im; 0.26756571083046604 - 0.28628829789300914im -0.384490490794575 - 0.48736462649539186im … -0.1130892845780817 + 0.14258985443955738im -4.177871778732048e-7 - 9.204433474634034e-8im; … ; -0.013243601916594686 + 0.0004476892574926303im -2.974985347510955e-5 + 0.00025212908778515254im … -0.012964046397201362 + 0.0014956124406891487im 0.04107719526382722 + 0.02092229926957427im; 0.04581094162814783 - 0.049016506871866435im 0.0032909386977146827 + 0.004171461057262828im … -0.0890973393566363 + 0.11233657938670114im 0.44814118097246375 - 0.1456815108515671im]], residual_norms = [[0.0, 2.4881891158224768e-12, 1.9672864497091662e-12, 9.418976007834835e-13, 1.1091279550178254e-12, 3.154486541040947e-10, 3.655368251543101e-7], [0.0, 0.0, 1.479129006345851e-12, 1.0784298508331108e-12, 2.0446591929390006e-10, 5.786193133176439e-9, 5.983583449690379e-9], [0.0, 0.0, 0.0, 1.0189289270624605e-12, 6.268679912174837e-11, 1.5796785774312075e-9, 7.389539645007385e-7], [0.0, 0.0, 0.0, 1.307096430964025e-12, 1.461603624027655e-10, 7.676436918947627e-6, 7.465867214163142e-6]], n_iter = [5, 4, 4, 4], converged = 1, n_matvec = 137)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2106842913919784, 0.027588094031831104, 0.0023134047849649093, 0.0002583742508910853, 9.272954055240363e-6, 1.0140912575797304e-6, 7.051105349799042e-8, 5.494978137435538e-9, 1.0275054350450116e-10, 2.1636895570632562e-11], history_Etot = [-7.905274340397148, -7.91054444192294, -7.910593457643996, -7.910594393390932, -7.910594396444942, -7.910594396488412, -7.910594396488504, -7.910594396488506, -7.910594396488505, -7.910594396488507], occupation_threshold = 1.0e-6, seed = 0x6c9696e1fdb5bc60, runtime_ns = 0x0000000082e3eac8)