Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#779"{DFTK.var"#anderson#778#780"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02064289599354499 + 0.019924017143875823im 0.00504433854413343 - 0.011926487097153805im … 0.028064484244619735 - 0.06576684323991264im -0.013211338789149232 - 0.007746480427102733im; 0.03252790081406293 - 0.038108621353325406im -0.009737248538769106 - 0.059825493952753064im … -0.02480504370628466 + 0.03082764954882944im 0.0404505825052892 - 0.0030226930358276923im; … ; -0.0645443913285484 - 0.0352225215354615im -0.0336861831893753 + 0.034831403813099085im … 0.06378435203459018 + 0.004022246006392261im 0.046140706322093494 - 0.08475340348070914im; -0.030418770312378936 + 0.00993063851690066im 0.007607354568824477 + 0.02627637863492506im … 0.12206608863355345 - 0.04345348028933786im 0.02065724725694016 - 0.08498751526128126im;;; 0.06484568675967493 - 0.08569633540547514im -0.06334726537977688 - 0.09346757190715627im … -0.045492986776965255 - 0.025156383555063076im 0.034481157536682155 + 0.02474210975289768im; -0.03991458271668407 - 0.1652684016777788im -0.06332429346614585 - 0.02470625759017081im … 0.027213967073560476 + 0.04063729496936436im 0.07785393583376699 - 0.09459772744705823im; … ; -0.08559858347193502 - 0.02594150952305145im -0.033648352775077245 + 0.009654056742713458im … 0.05094209563068761 - 0.013579945605159658im -0.022572246137853892 - 0.09852772930332566im; -0.00044047504781251096 + 0.007324784098354908im -0.01736408566600023 - 0.04440479452369389im … 0.0513270789497416 - 0.09532289001413469im -0.08163609170056287 - 0.06278988964669063im;;; -0.027655892891673806 - 0.15605862353952188im -0.09874368513201096 - 0.03779305202402321im … -0.04348314006946065 + 0.04877077877999336im 0.06869120478976129 - 0.019214251930700844im; -0.08618372334760735 - 0.05110992991194083im 0.038192512286081434 - 0.004993329872592871im … 0.05429368303090888 + 0.018623080945839338im -0.00687941148149908 - 0.12295032653926932im; … ; -0.07021263269593717 + 0.013721008403165202im -0.027982535646490614 - 0.001617360218131244im … 0.013771694078122489 - 0.05513368785844682im -0.08674361407050091 - 0.048864799623783595im; 0.011391412000323137 - 0.03841447584410288im -0.057879786730708205 - 0.07351723076680698im … -0.06219905186797822 - 0.05753291083313829im -0.05944683273943501 + 0.026867347727245146im;;; … ;;; -0.0051731677070570165 + 0.09629829390577453im 0.023386713331007565 - 0.08034891085233084im … -0.00206950300067202 - 0.05644183279117723im -0.1329170845746465 + 0.016430850946085415im; 0.028635959808217877 - 0.019731983915735468im -0.08979563027717542 - 0.07245049158005795im … -0.05310413934145026 - 0.012502469444915128im -0.05044354646241542 + 0.07252150838054722im; … ; -0.06722703328642261 - 0.024733254743552452im 0.022086048465167405 + 0.037786978125215503im … 0.08579578762302006 - 0.05852154152750218im 0.016303653283698864 - 0.0656061745990968im; -0.10016738447867282 + 0.05708737564346555im 0.05914408946092255 + 0.0015968752111899381im … 0.05554156525225574 - 0.04130109224279373im -0.0551529887114246 - 0.0767846847923245im;;; 0.03867475034641919 - 0.02085341841087268im -0.1303106481833691 - 0.0711307541526323im … 0.014365288419887361 - 0.031455975259404245im -0.015445665084816207 + 0.05616160255041557im; -0.10201427217733947 - 0.09934265581046348im -0.17603860162495755 + 0.06957754351215709im … -0.042413206233302386 + 0.02760344182310366im 0.0193765826620204 + 0.014033596641677824im; … ; 0.022544739898657233 + 0.029070174892491918im 0.05135343919271132 - 0.05030671320393322im … 0.06493977567696838 + 0.0029645716468202493im 0.04619057309986124 + 0.031856383360810925im; 0.018126779505774876 + 0.043284953880776265im -0.011539083588714107 - 0.07718216012625169im … 0.09714619500076144 - 0.0010053503334961356im -0.005580533976503356 + 0.008818297981423091im;;; -0.057999682582117566 - 0.03763017253403815im -0.09734865676637451 + 0.08065498178842487im … 0.04085382035192772 - 0.017125426584848377im 0.047747677299532026 + 0.0028169641718382293im; -0.09586739334675043 + 0.015528426528098008im -0.016668487803652654 + 0.10883439947828766im … -0.006795364390875171 + 0.035787620431832895im -0.010490773952769455 - 0.03051839139493885im; … ; 0.007030511402483473 - 0.0633015173649324im -0.053359631639322974 - 0.022557553218141718im … 0.0936404150883321 + 0.02438367212833298im 0.0992929838182754 - 0.008266175946775756im; -0.013979398560033572 + 0.013195264236278662im -0.07400790891676166 + 0.01914985878178122im … 0.10636181705694069 - 0.005948167359571439im 0.06746804296240642 - 0.05133351263419198im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02064289599354499 + 0.019924017143875823im 0.00504433854413343 - 0.011926487097153805im … 0.028064484244619735 - 0.06576684323991264im -0.013211338789149232 - 0.007746480427102733im; 0.03252790081406293 - 0.038108621353325406im -0.009737248538769106 - 0.059825493952753064im … -0.02480504370628466 + 0.03082764954882944im 0.0404505825052892 - 0.0030226930358276923im; … ; -0.0645443913285484 - 0.0352225215354615im -0.0336861831893753 + 0.034831403813099085im … 0.06378435203459018 + 0.004022246006392261im 0.046140706322093494 - 0.08475340348070914im; -0.030418770312378936 + 0.00993063851690066im 0.007607354568824477 + 0.02627637863492506im … 0.12206608863355345 - 0.04345348028933786im 0.02065724725694016 - 0.08498751526128126im;;; 0.06484568675967493 - 0.08569633540547514im -0.06334726537977688 - 0.09346757190715627im … -0.045492986776965255 - 0.025156383555063076im 0.034481157536682155 + 0.02474210975289768im; -0.03991458271668407 - 0.1652684016777788im -0.06332429346614585 - 0.02470625759017081im … 0.027213967073560476 + 0.04063729496936436im 0.07785393583376699 - 0.09459772744705823im; … ; -0.08559858347193502 - 0.02594150952305145im -0.033648352775077245 + 0.009654056742713458im … 0.05094209563068761 - 0.013579945605159658im -0.022572246137853892 - 0.09852772930332566im; -0.00044047504781251096 + 0.007324784098354908im -0.01736408566600023 - 0.04440479452369389im … 0.0513270789497416 - 0.09532289001413469im -0.08163609170056287 - 0.06278988964669063im;;; -0.027655892891673806 - 0.15605862353952188im -0.09874368513201096 - 0.03779305202402321im … -0.04348314006946065 + 0.04877077877999336im 0.06869120478976129 - 0.019214251930700844im; -0.08618372334760735 - 0.05110992991194083im 0.038192512286081434 - 0.004993329872592871im … 0.05429368303090888 + 0.018623080945839338im -0.00687941148149908 - 0.12295032653926932im; … ; -0.07021263269593717 + 0.013721008403165202im -0.027982535646490614 - 0.001617360218131244im … 0.013771694078122489 - 0.05513368785844682im -0.08674361407050091 - 0.048864799623783595im; 0.011391412000323137 - 0.03841447584410288im -0.057879786730708205 - 0.07351723076680698im … -0.06219905186797822 - 0.05753291083313829im -0.05944683273943501 + 0.026867347727245146im;;; … ;;; -0.0051731677070570165 + 0.09629829390577453im 0.023386713331007565 - 0.08034891085233084im … -0.00206950300067202 - 0.05644183279117723im -0.1329170845746465 + 0.016430850946085415im; 0.028635959808217877 - 0.019731983915735468im -0.08979563027717542 - 0.07245049158005795im … -0.05310413934145026 - 0.012502469444915128im -0.05044354646241542 + 0.07252150838054722im; … ; -0.06722703328642261 - 0.024733254743552452im 0.022086048465167405 + 0.037786978125215503im … 0.08579578762302006 - 0.05852154152750218im 0.016303653283698864 - 0.0656061745990968im; -0.10016738447867282 + 0.05708737564346555im 0.05914408946092255 + 0.0015968752111899381im … 0.05554156525225574 - 0.04130109224279373im -0.0551529887114246 - 0.0767846847923245im;;; 0.03867475034641919 - 0.02085341841087268im -0.1303106481833691 - 0.0711307541526323im … 0.014365288419887361 - 0.031455975259404245im -0.015445665084816207 + 0.05616160255041557im; -0.10201427217733947 - 0.09934265581046348im -0.17603860162495755 + 0.06957754351215709im … -0.042413206233302386 + 0.02760344182310366im 0.0193765826620204 + 0.014033596641677824im; … ; 0.022544739898657233 + 0.029070174892491918im 0.05135343919271132 - 0.05030671320393322im … 0.06493977567696838 + 0.0029645716468202493im 0.04619057309986124 + 0.031856383360810925im; 0.018126779505774876 + 0.043284953880776265im -0.011539083588714107 - 0.07718216012625169im … 0.09714619500076144 - 0.0010053503334961356im -0.005580533976503356 + 0.008818297981423091im;;; -0.057999682582117566 - 0.03763017253403815im -0.09734865676637451 + 0.08065498178842487im … 0.04085382035192772 - 0.017125426584848377im 0.047747677299532026 + 0.0028169641718382293im; -0.09586739334675043 + 0.015528426528098008im -0.016668487803652654 + 0.10883439947828766im … -0.006795364390875171 + 0.035787620431832895im -0.010490773952769455 - 0.03051839139493885im; … ; 0.007030511402483473 - 0.0633015173649324im -0.053359631639322974 - 0.022557553218141718im … 0.0936404150883321 + 0.02438367212833298im 0.0992929838182754 - 0.008266175946775756im; -0.013979398560033572 + 0.013195264236278662im -0.07400790891676166 + 0.01914985878178122im … 0.10636181705694069 - 0.005948167359571439im 0.06746804296240642 - 0.05133351263419198im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02064289599354499 + 0.019924017143875823im 0.00504433854413343 - 0.011926487097153805im … 0.028064484244619735 - 0.06576684323991264im -0.013211338789149232 - 0.007746480427102733im; 0.03252790081406293 - 0.038108621353325406im -0.009737248538769106 - 0.059825493952753064im … -0.02480504370628466 + 0.03082764954882944im 0.0404505825052892 - 0.0030226930358276923im; … ; -0.0645443913285484 - 0.0352225215354615im -0.0336861831893753 + 0.034831403813099085im … 0.06378435203459018 + 0.004022246006392261im 0.046140706322093494 - 0.08475340348070914im; -0.030418770312378936 + 0.00993063851690066im 0.007607354568824477 + 0.02627637863492506im … 0.12206608863355345 - 0.04345348028933786im 0.02065724725694016 - 0.08498751526128126im;;; 0.06484568675967493 - 0.08569633540547514im -0.06334726537977688 - 0.09346757190715627im … -0.045492986776965255 - 0.025156383555063076im 0.034481157536682155 + 0.02474210975289768im; -0.03991458271668407 - 0.1652684016777788im -0.06332429346614585 - 0.02470625759017081im … 0.027213967073560476 + 0.04063729496936436im 0.07785393583376699 - 0.09459772744705823im; … ; -0.08559858347193502 - 0.02594150952305145im -0.033648352775077245 + 0.009654056742713458im … 0.05094209563068761 - 0.013579945605159658im -0.022572246137853892 - 0.09852772930332566im; -0.00044047504781251096 + 0.007324784098354908im -0.01736408566600023 - 0.04440479452369389im … 0.0513270789497416 - 0.09532289001413469im -0.08163609170056287 - 0.06278988964669063im;;; -0.027655892891673806 - 0.15605862353952188im -0.09874368513201096 - 0.03779305202402321im … -0.04348314006946065 + 0.04877077877999336im 0.06869120478976129 - 0.019214251930700844im; -0.08618372334760735 - 0.05110992991194083im 0.038192512286081434 - 0.004993329872592871im … 0.05429368303090888 + 0.018623080945839338im -0.00687941148149908 - 0.12295032653926932im; … ; -0.07021263269593717 + 0.013721008403165202im -0.027982535646490614 - 0.001617360218131244im … 0.013771694078122489 - 0.05513368785844682im -0.08674361407050091 - 0.048864799623783595im; 0.011391412000323137 - 0.03841447584410288im -0.057879786730708205 - 0.07351723076680698im … -0.06219905186797822 - 0.05753291083313829im -0.05944683273943501 + 0.026867347727245146im;;; … ;;; -0.0051731677070570165 + 0.09629829390577453im 0.023386713331007565 - 0.08034891085233084im … -0.00206950300067202 - 0.05644183279117723im -0.1329170845746465 + 0.016430850946085415im; 0.028635959808217877 - 0.019731983915735468im -0.08979563027717542 - 0.07245049158005795im … -0.05310413934145026 - 0.012502469444915128im -0.05044354646241542 + 0.07252150838054722im; … ; -0.06722703328642261 - 0.024733254743552452im 0.022086048465167405 + 0.037786978125215503im … 0.08579578762302006 - 0.05852154152750218im 0.016303653283698864 - 0.0656061745990968im; -0.10016738447867282 + 0.05708737564346555im 0.05914408946092255 + 0.0015968752111899381im … 0.05554156525225574 - 0.04130109224279373im -0.0551529887114246 - 0.0767846847923245im;;; 0.03867475034641919 - 0.02085341841087268im -0.1303106481833691 - 0.0711307541526323im … 0.014365288419887361 - 0.031455975259404245im -0.015445665084816207 + 0.05616160255041557im; -0.10201427217733947 - 0.09934265581046348im -0.17603860162495755 + 0.06957754351215709im … -0.042413206233302386 + 0.02760344182310366im 0.0193765826620204 + 0.014033596641677824im; … ; 0.022544739898657233 + 0.029070174892491918im 0.05135343919271132 - 0.05030671320393322im … 0.06493977567696838 + 0.0029645716468202493im 0.04619057309986124 + 0.031856383360810925im; 0.018126779505774876 + 0.043284953880776265im -0.011539083588714107 - 0.07718216012625169im … 0.09714619500076144 - 0.0010053503334961356im -0.005580533976503356 + 0.008818297981423091im;;; -0.057999682582117566 - 0.03763017253403815im -0.09734865676637451 + 0.08065498178842487im … 0.04085382035192772 - 0.017125426584848377im 0.047747677299532026 + 0.0028169641718382293im; -0.09586739334675043 + 0.015528426528098008im -0.016668487803652654 + 0.10883439947828766im … -0.006795364390875171 + 0.035787620431832895im -0.010490773952769455 - 0.03051839139493885im; … ; 0.007030511402483473 - 0.0633015173649324im -0.053359631639322974 - 0.022557553218141718im … 0.0936404150883321 + 0.02438367212833298im 0.0992929838182754 - 0.008266175946775756im; -0.013979398560033572 + 0.013195264236278662im -0.07400790891676166 + 0.01914985878178122im … 0.10636181705694069 - 0.005948167359571439im 0.06746804296240642 - 0.05133351263419198im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.24756966872448 -11.100308396742356 … -8.289845772412452 -11.100308396742417; -11.100308396742356 -9.13005782594779 … -9.130057795896496 -11.10030835675938; … ; -8.289845772412452 -9.130057795896496 … -4.149589921643395 -6.287956198199345; -11.100308396742415 -11.100308356759381 … -6.287956198199345 -9.111848223577393;;; -11.100308396742358 -9.130057825947787 … -9.130057795896496 -11.100308356759381; -9.13005782594779 -6.903159481982183 … -9.130057827297469 -10.053883826552125; … ; -9.130057795896496 -9.13005782729747 … -5.294353669214467 -7.547399206521653; -11.10030835675938 -10.053883826552125 … -7.5473992065216535 -10.05388382655223;;; -8.28984577241275 -6.30762193151679 … -8.289845781011705 -9.111848193526063; -6.307621931516792 -4.516655665815844 … -7.547399237611484 -7.5473992065218845; … ; -8.289845781011703 -7.547399237611483 … -5.768969083581287 -7.547399237611556; -9.111848193526061 -7.547399206521884 … -7.547399237611557 -9.1118482249273;;; … ;;; -5.301031718249876 -6.307621955788997 … -2.549703573276168 -3.849582179387948; -6.307621955788998 -6.903159495209012 … -3.3290606985464057 -4.878419358630745; … ; -2.5497035732761675 -3.3290606985464057 … -1.25679847090263 -1.8141947460412216; -3.8495821793879466 -4.8784193586307465 … -1.8141947460412209 -2.7147673353227755;;; -8.289845772412454 -9.130057795896496 … -4.149589921643396 -6.2879561981993435; -9.130057795896496 -9.130057827297469 … -5.294353669214466 -7.547399206521652; … ; -4.149589921643397 -5.294353669214466 … -1.9094492399154748 -2.894612367852425; -6.287956198199344 -7.547399206521652 … -2.8946123678524245 -4.485542759372137;;; -11.100308396742417 -11.100308356759381 … -6.287956198199345 -9.111848223577391; -11.10030835675938 -10.053883826552125 … -7.547399206521654 -10.05388382655223; … ; -6.2879561981993435 -7.547399206521654 … -2.8946123678524245 -4.485542759372137; -9.111848223577393 -10.05388382655223 … -4.485542759372138 -6.871104500135268]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02064289599354499 + 0.019924017143875823im 0.00504433854413343 - 0.011926487097153805im … 0.028064484244619735 - 0.06576684323991264im -0.013211338789149232 - 0.007746480427102733im; 0.03252790081406293 - 0.038108621353325406im -0.009737248538769106 - 0.059825493952753064im … -0.02480504370628466 + 0.03082764954882944im 0.0404505825052892 - 0.0030226930358276923im; … ; -0.0645443913285484 - 0.0352225215354615im -0.0336861831893753 + 0.034831403813099085im … 0.06378435203459018 + 0.004022246006392261im 0.046140706322093494 - 0.08475340348070914im; -0.030418770312378936 + 0.00993063851690066im 0.007607354568824477 + 0.02627637863492506im … 0.12206608863355345 - 0.04345348028933786im 0.02065724725694016 - 0.08498751526128126im;;; 0.06484568675967493 - 0.08569633540547514im -0.06334726537977688 - 0.09346757190715627im … -0.045492986776965255 - 0.025156383555063076im 0.034481157536682155 + 0.02474210975289768im; -0.03991458271668407 - 0.1652684016777788im -0.06332429346614585 - 0.02470625759017081im … 0.027213967073560476 + 0.04063729496936436im 0.07785393583376699 - 0.09459772744705823im; … ; -0.08559858347193502 - 0.02594150952305145im -0.033648352775077245 + 0.009654056742713458im … 0.05094209563068761 - 0.013579945605159658im -0.022572246137853892 - 0.09852772930332566im; -0.00044047504781251096 + 0.007324784098354908im -0.01736408566600023 - 0.04440479452369389im … 0.0513270789497416 - 0.09532289001413469im -0.08163609170056287 - 0.06278988964669063im;;; -0.027655892891673806 - 0.15605862353952188im -0.09874368513201096 - 0.03779305202402321im … -0.04348314006946065 + 0.04877077877999336im 0.06869120478976129 - 0.019214251930700844im; -0.08618372334760735 - 0.05110992991194083im 0.038192512286081434 - 0.004993329872592871im … 0.05429368303090888 + 0.018623080945839338im -0.00687941148149908 - 0.12295032653926932im; … ; -0.07021263269593717 + 0.013721008403165202im -0.027982535646490614 - 0.001617360218131244im … 0.013771694078122489 - 0.05513368785844682im -0.08674361407050091 - 0.048864799623783595im; 0.011391412000323137 - 0.03841447584410288im -0.057879786730708205 - 0.07351723076680698im … -0.06219905186797822 - 0.05753291083313829im -0.05944683273943501 + 0.026867347727245146im;;; … ;;; -0.0051731677070570165 + 0.09629829390577453im 0.023386713331007565 - 0.08034891085233084im … -0.00206950300067202 - 0.05644183279117723im -0.1329170845746465 + 0.016430850946085415im; 0.028635959808217877 - 0.019731983915735468im -0.08979563027717542 - 0.07245049158005795im … -0.05310413934145026 - 0.012502469444915128im -0.05044354646241542 + 0.07252150838054722im; … ; -0.06722703328642261 - 0.024733254743552452im 0.022086048465167405 + 0.037786978125215503im … 0.08579578762302006 - 0.05852154152750218im 0.016303653283698864 - 0.0656061745990968im; -0.10016738447867282 + 0.05708737564346555im 0.05914408946092255 + 0.0015968752111899381im … 0.05554156525225574 - 0.04130109224279373im -0.0551529887114246 - 0.0767846847923245im;;; 0.03867475034641919 - 0.02085341841087268im -0.1303106481833691 - 0.0711307541526323im … 0.014365288419887361 - 0.031455975259404245im -0.015445665084816207 + 0.05616160255041557im; -0.10201427217733947 - 0.09934265581046348im -0.17603860162495755 + 0.06957754351215709im … -0.042413206233302386 + 0.02760344182310366im 0.0193765826620204 + 0.014033596641677824im; … ; 0.022544739898657233 + 0.029070174892491918im 0.05135343919271132 - 0.05030671320393322im … 0.06493977567696838 + 0.0029645716468202493im 0.04619057309986124 + 0.031856383360810925im; 0.018126779505774876 + 0.043284953880776265im -0.011539083588714107 - 0.07718216012625169im … 0.09714619500076144 - 0.0010053503334961356im -0.005580533976503356 + 0.008818297981423091im;;; -0.057999682582117566 - 0.03763017253403815im -0.09734865676637451 + 0.08065498178842487im … 0.04085382035192772 - 0.017125426584848377im 0.047747677299532026 + 0.0028169641718382293im; -0.09586739334675043 + 0.015528426528098008im -0.016668487803652654 + 0.10883439947828766im … -0.006795364390875171 + 0.035787620431832895im -0.010490773952769455 - 0.03051839139493885im; … ; 0.007030511402483473 - 0.0633015173649324im -0.053359631639322974 - 0.022557553218141718im … 0.0936404150883321 + 0.02438367212833298im 0.0992929838182754 - 0.008266175946775756im; -0.013979398560033572 + 0.013195264236278662im -0.07400790891676166 + 0.01914985878178122im … 0.10636181705694069 - 0.005948167359571439im 0.06746804296240642 - 0.05133351263419198im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488505), converged = true, ρ = [7.589784542987638e-5 0.0011262712728367992 … 0.006697037550082344 0.0011262712728368127; 0.001126271272836806 0.005274334457371009 … 0.005274334457371032 0.0011262712728368092; … ; 0.006697037550082341 0.005274334457371041 … 0.023244754191064327 0.01225898682524815; 0.001126271272836806 0.0011262712728368025 … 0.012258986825248138 0.0037700086298980656;;; 0.001126271272836812 0.005274334457371012 … 0.005274334457371049 0.0011262712728368181; 0.005274334457371019 0.014620065304717766 … 0.005274334457371033 0.0025880808748520606; … ; 0.005274334457371045 0.005274334457371041 … 0.018107686646147758 0.00892200304474842; 0.0011262712728368068 0.0025880808748520523 … 0.008922003044748406 0.00258808087485207;;; 0.006697037550082317 0.01641210910159888 … 0.0066970375500823385 0.0037700086298980647; 0.016412109101598887 0.031277839315921735 … 0.008922003044748382 0.008922003044748376; … ; 0.006697037550082335 0.00892200304474839 … 0.016476756359452966 0.008922003044748413; 0.003770008629898056 0.008922003044748368 … 0.0089220030447484 0.0037700086298980595;;; … ;;; 0.019853839853403322 0.016412109101598897 … 0.037156673635680613 0.027190800686588485; 0.016412109101598904 0.01462006530471779 … 0.032301272126450585 0.022322100931716868; … ; 0.037156673635680613 0.0323012721264506 … 0.04629698070145383 0.0426365827314517; 0.027190800686588485 0.02232210093171686 … 0.04263658273145168 0.03477222914201132;;; 0.006697037550082323 0.005274334457371022 … 0.023244754191064292 0.012258986825248123; 0.005274334457371028 0.00527433445737101 … 0.018107686646147713 0.008922003044748383; … ; 0.0232447541910643 0.018107686646147723 … 0.04037111033559257 0.031491603811404686; 0.012258986825248118 0.008922003044748378 … 0.03149160381140467 0.02004716343274994;;; 0.0011262712728368133 0.001126271272836802 … 0.012258986825248133 0.003770008629898066; 0.0011262712728368086 0.002588080874852046 … 0.008922003044748387 0.002588080874852063; … ; 0.012258986825248133 0.008922003044748399 … 0.0314916038114047 0.02004716343274997; 0.003770008629898057 0.0025880808748520575 … 0.020047163432749957 0.008952603496774706;;;;], eigenvalues = [[-0.17836835653949537, 0.2624919449912639, 0.26249194499126394, 0.26249194499126405, 0.3546921481676348, 0.3546921481676354, 0.35469214816763683], [-0.12755037617935788, 0.06475320594667941, 0.22545166517397258, 0.2254516651739729, 0.3219776496112833, 0.38922276908479414, 0.3892227690847948], [-0.10818729216524979, 0.0775500347341891, 0.17278328011454425, 0.17278328011454452, 0.2843518536198076, 0.3305476484330971, 0.5267232426388591], [-0.05777325374453516, 0.012724782205343947, 0.09766073750118004, 0.18417825332955426, 0.3152284179598968, 0.47203121827003214, 0.49791351761438685]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930553584, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.9195518809912043 + 0.23691353990979466im -6.056318725825386e-15 + 3.0860195955113344e-14im … 2.080672479725278e-12 - 1.8670468890267581e-10im -3.891823306298847e-11 + 3.4433896151869495e-9im; -0.05050484818908703 + 0.08556084093661379im -0.15808263550155113 + 0.188717764461492im … 0.22176142655660988 - 0.042707282174136225im -0.15348820424219395 - 0.03040167056419561im; … ; 0.011386240597880182 - 0.0029335534210709327im 0.01398368160928013 + 0.03223006756001381im … -0.053186860629891114 + 0.011727952926008707im -0.02422230125482652 - 0.01167550074458964im; -0.05050484818909461 + 0.08556084093662379im 0.45593204830045625 - 0.07111909655806342im … -0.024160511628731444 + 0.34234813016652915im -0.36642333058864424 + 0.04402223736395222im], [-0.8634509019970042 + 0.3211403686581904im -0.07257140454411176 + 0.18961783386380954im … -4.3476709204123794e-11 - 4.4636772520582045e-11im -1.2466647107048735e-10 - 4.1314948865641153e-10im; -0.026037390548307057 + 0.05687454633100042im -0.003672604198947384 - 0.008226797720284743im … 6.565473867919067e-11 - 2.382762510986996e-10im -5.6424960346720616e-11 - 2.7979867651621516e-11im; … ; 0.0046322570211731655 - 0.0017228596600676745im 0.03021751533366451 - 0.07895368483367535im … 0.0692988223555148 + 0.07720400015875375im 0.0029848631765311225 - 0.018361928493434213im; -0.04866568944904118 + 0.10630247313626642im 0.04081334843179983 + 0.09142372650245516im … 0.4580756429653093 + 0.024717402978727862im -0.048080020806047 - 0.06674578043614841im], [-0.6734885638397815 + 0.6348423558212826im -5.382153662529563e-15 - 2.949158050995076e-14im … 4.077728345569238e-11 - 6.556348199312726e-11im 3.0165807842401114e-9 + 1.1305176026076042e-8im; -0.0020235045413280646 + 0.06850383758828846im -0.04212250686937793 - 0.030824994013913226im … 0.0003276900124059616 - 0.025958703714994754im 0.002628283858078594 - 0.0011029148103727665im; … ; 0.007709641373751207 - 0.007267245733725911im -3.154709523514492e-14 - 5.689183733986593e-14im … 5.247933147041517e-11 - 1.314424902079402e-10im -0.05117686325140613 - 0.018304135069768968im; -0.004731229217633045 + 0.1601713024595051im 0.23664494662482108 + 0.17317533084513628im … 0.004696764784139992 - 0.3720649991952107im -0.14069425123059778 + 0.06661220019800818im], [-0.5592150927391459 + 0.5711373292702849im -4.58149947487104e-15 + 1.8588609537822325e-15im … 0.10240140968896803 + 0.15002426898699575im -2.1366550675711564e-6 - 1.4971444681609155e-6im; 0.004132834479636591 + 0.3918358314420135im -0.27050015112265924 + 0.5587368655397199im … -0.17884006945376923 - 0.03373945094758028im 1.0592078351573407e-6 - 1.519515211407783e-6im; … ; 0.009270645463918632 - 0.009468291824808841im 0.00023980449100418228 - 8.335428496760338e-5im … -0.007357904846084389 - 0.01077855496623824im -0.002614790060998599 - 0.0460252005882646im; 0.0007075982887129942 + 0.0670877009848225im 0.002315270302926287 - 0.004782351753055835im … -0.14091069041610824 - 0.026577151742809935im -0.35157418957755465 - 0.31378252381644084im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653949537, 0.2624919449912639, 0.26249194499126394, 0.26249194499126405, 0.3546921481676348, 0.3546921481676354, 0.35469214816763683], [-0.12755037617935788, 0.06475320594667941, 0.22545166517397258, 0.2254516651739729, 0.3219776496112833, 0.38922276908479414, 0.3892227690847948], [-0.10818729216524979, 0.0775500347341891, 0.17278328011454425, 0.17278328011454452, 0.2843518536198076, 0.3305476484330971, 0.5267232426388591], [-0.05777325374453516, 0.012724782205343947, 0.09766073750118004, 0.18417825332955426, 0.3152284179598968, 0.47203121827003214, 0.49791351761438685]], X = [[-0.9195518809912043 + 0.23691353990979466im -6.056318725825386e-15 + 3.0860195955113344e-14im … 2.080672479725278e-12 - 1.8670468890267581e-10im -3.891823306298847e-11 + 3.4433896151869495e-9im; -0.05050484818908703 + 0.08556084093661379im -0.15808263550155113 + 0.188717764461492im … 0.22176142655660988 - 0.042707282174136225im -0.15348820424219395 - 0.03040167056419561im; … ; 0.011386240597880182 - 0.0029335534210709327im 0.01398368160928013 + 0.03223006756001381im … -0.053186860629891114 + 0.011727952926008707im -0.02422230125482652 - 0.01167550074458964im; -0.05050484818909461 + 0.08556084093662379im 0.45593204830045625 - 0.07111909655806342im … -0.024160511628731444 + 0.34234813016652915im -0.36642333058864424 + 0.04402223736395222im], [-0.8634509019970042 + 0.3211403686581904im -0.07257140454411176 + 0.18961783386380954im … -4.3476709204123794e-11 - 4.4636772520582045e-11im -1.2466647107048735e-10 - 4.1314948865641153e-10im; -0.026037390548307057 + 0.05687454633100042im -0.003672604198947384 - 0.008226797720284743im … 6.565473867919067e-11 - 2.382762510986996e-10im -5.6424960346720616e-11 - 2.7979867651621516e-11im; … ; 0.0046322570211731655 - 0.0017228596600676745im 0.03021751533366451 - 0.07895368483367535im … 0.0692988223555148 + 0.07720400015875375im 0.0029848631765311225 - 0.018361928493434213im; -0.04866568944904118 + 0.10630247313626642im 0.04081334843179983 + 0.09142372650245516im … 0.4580756429653093 + 0.024717402978727862im -0.048080020806047 - 0.06674578043614841im], [-0.6734885638397815 + 0.6348423558212826im -5.382153662529563e-15 - 2.949158050995076e-14im … 4.077728345569238e-11 - 6.556348199312726e-11im 3.0165807842401114e-9 + 1.1305176026076042e-8im; -0.0020235045413280646 + 0.06850383758828846im -0.04212250686937793 - 0.030824994013913226im … 0.0003276900124059616 - 0.025958703714994754im 0.002628283858078594 - 0.0011029148103727665im; … ; 0.007709641373751207 - 0.007267245733725911im -3.154709523514492e-14 - 5.689183733986593e-14im … 5.247933147041517e-11 - 1.314424902079402e-10im -0.05117686325140613 - 0.018304135069768968im; -0.004731229217633045 + 0.1601713024595051im 0.23664494662482108 + 0.17317533084513628im … 0.004696764784139992 - 0.3720649991952107im -0.14069425123059778 + 0.06661220019800818im], [-0.5592150927391459 + 0.5711373292702849im -4.58149947487104e-15 + 1.8588609537822325e-15im … 0.10240140968896803 + 0.15002426898699575im -2.1366550675711564e-6 - 1.4971444681609155e-6im; 0.004132834479636591 + 0.3918358314420135im -0.27050015112265924 + 0.5587368655397199im … -0.17884006945376923 - 0.03373945094758028im 1.0592078351573407e-6 - 1.519515211407783e-6im; … ; 0.009270645463918632 - 0.009468291824808841im 0.00023980449100418228 - 8.335428496760338e-5im … -0.007357904846084389 - 0.01077855496623824im -0.002614790060998599 - 0.0460252005882646im; 0.0007075982887129942 + 0.0670877009848225im 0.002315270302926287 - 0.004782351753055835im … -0.14091069041610824 - 0.026577151742809935im -0.35157418957755465 - 0.31378252381644084im]], residual_norms = [[0.0, 0.0, 1.5864556336103795e-12, 1.4035701789915426e-12, 5.925744935113595e-9, 3.49676482099837e-9, 6.44784930141518e-8], [0.0, 0.0, 9.058406655376829e-13, 8.143591484169645e-13, 1.5668195780475438e-10, 3.153653681080986e-9, 3.1765146248359813e-9], [1.1169190543664804e-12, 1.6202626932163947e-12, 2.0208262383718074e-12, 9.031029181659172e-13, 7.302619778279678e-11, 2.1340754874454335e-9, 4.895452561013845e-7], [7.802725431756965e-13, 6.722134653234253e-13, 6.762707692940082e-13, 1.977003132565408e-12, 3.462749323862348e-10, 9.609696617874578e-6, 5.5251825332021945e-6]], n_iter = [5, 4, 3, 3], converged = 1, n_matvec = 126)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069748571510324, 0.027617099379027052, 0.002309233709148094, 0.0002575121615287956, 9.24392957587356e-6, 8.79862851111342e-7, 3.6512860033221644e-8, 2.4098099903278813e-9, 1.2037730259775014e-10, 1.764745456913808e-11], history_Etot = [-7.9052605449291615, -7.910544384148739, -7.910593452826948, -7.9105943933560185, -7.910594396445477, -7.910594396488442, -7.910594396488506, -7.910594396488504, -7.9105943964885075, -7.910594396488505], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000996ad33e)