Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model. Values up to1e-2atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solvertoself_consistent_field, e.g.solver = scf_anderson_solver(; m=15)(::DFTK.var"#anderson#920"{DFTK.var"#anderson#919#921"{Int64, Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)All keyword arguments are passed through to
DFTK.AndersonAcceleration.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiffparameter of theAdaptiveDiagtolalgorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBandsalgorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)AdaptiveBands(4, 7, 1.0e-6, 0.01)Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptiveinstead ofself_consistent_field:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.017609523075042724 - 0.0005213955678448584im 0.010972871629214166 - 0.04200902642526128im … -0.12820476587493873 + 0.04381029775886455im -0.018553947803443733 + 0.029109691228500982im; -0.02668923407119548 - 0.03866580824754474im -0.05383596878855306 - 0.04119253110583762im … -0.027088138888172228 + 0.029963688391371854im -0.005117129293846135 - 0.011702800378821338im; … ; -0.11764350444499008 + 0.048776899917332604im -0.023060054891195787 + 0.10247835216215573im … 0.009956608290675451 - 0.03146733724433916im -0.07190985230605802 - 0.050376380642789334im; -0.023679237961042963 + 0.08213160716972097im 0.04041740485498785 + 0.03494611744903741im … -0.15197983882728128 - 0.06001061846759484im -0.12288753545783035 + 0.046253249047360015im;;; -0.025662469670329528 - 0.024607671082051415im 0.012982317095593197 - 0.00797546297143583im … -0.037507555907551116 + 0.07204744243043348im -0.01493014841398756 - 0.052711139850641714im; -0.1366724256699101 - 0.013430543800877374im -0.04133246188052215 + 0.020965485390906365im … -0.014777743926094935 - 0.029662859901794035im -0.098390933142649 - 0.07138855844380441im; … ; 0.03399624842450757 + 0.0830208921796837im 0.05282166220517028 + 0.025722515775906982im … -0.06602494003575345 + 0.0010627168320902214im -0.0470712161005648 + 0.06923951191599764im; 0.044401965754915625 + 0.006145509782054778im 0.032689933943559096 + 0.011268802534347443im … -0.12115450778479941 + 0.07887772922664651im 0.01649701774313171 + 0.05826083061450062im;;; 0.003826242840445658 + 0.033584987757442314im 0.06766309677804548 - 0.0032897364818988556im … -0.022534872208913165 + 0.03227431288743231im -0.06154933025834943 + 0.008188482775515381im; -0.03557856833812074 + 0.0352585290903356im 0.018552874080113618 + 0.05348152103486825im … -0.1091287905925784 - 0.03137789900280453im -0.15043463703469923 + 0.035549179424536025im; … ; 0.04365238667156682 + 0.04599643842173557im 0.03890334517621577 + 0.033956063871636605im … -0.05374777712271625 + 0.057894925230491785im 0.007884336223394985 + 0.0758891640422883im; 0.045218250542978046 + 0.0532957182984842im 0.09103591945532775 + 0.042156605273151335im … -0.04174724756633608 + 0.10366439603366154im 0.013950794639100188 + 0.06286657170706719im;;; … ;;; -0.009626775568378862 - 0.04000379879879411im -0.08724761873365434 - 0.0073280132969720385im … 0.050973065784234745 - 0.03699458978021804im 0.021518595883153233 + 0.0003477890979460829im; -0.02052394527378399 - 0.007851943944990496im -0.032825159454325924 + 0.03510646631233663im … -0.0012215400401468582 - 0.026415609941262273im 0.01856842905975533 + 0.004298190291356675im; … ; -0.08180115308974631 + 0.13955166496414237im 0.03696996665067906 + 0.046791342638190264im … -0.05577854629738191 - 0.08450164418358902im -0.16784415135620942 + 0.009677293021144im; 0.0515819845337973 + 0.04391819202652247im -0.010668984846046076 - 0.055160199492657117im … -0.010566106936767024 + 0.020768275438270874im -0.021266297002486844 + 0.0792632631721291im;;; -0.0875936704169489 - 0.0021230494941646694im -0.06438028960484966 + 0.09700407069227657im … 0.014452009284489972 - 0.0523292301165742im -0.020643848894527854 - 0.038337223798455874im; -0.005206968610003382 + 0.008140806314583554im 0.023139777206729096 + 0.023346727215446245im … 0.02519575582187586 + 0.017019269767994984im 0.05883864590572738 - 0.010174398739945032im; … ; 0.06486359078877733 + 0.04168358273109251im -0.03263739327155672 - 0.07714141716005718im … -0.1228562487109654 + 0.040302974480928754im -0.05632276488359218 + 0.1427608014327939im; -0.03746695177411515 - 0.101039901117013im -0.15507888625949823 - 0.01130012906224062im … 0.029651284605817986 + 0.02628022192379184im 0.05113945313245809 - 0.01819085887063424im;;; -0.033674905122091287 + 0.05329869007536632im 0.04370924506978016 + 0.01237045854068394im … -0.06272560706612493 - 0.025192595446535404im -0.019888839127355836 + 0.01357104655031251im; 0.010022543678552806 - 0.015128981511626071im -0.02211761794439348 - 0.06322587841918278im … 0.025460056234778698 + 0.0074827574685507395im 0.015093796886082991 - 0.021949384147045118im; … ; -0.06429102906114367 - 0.09119797242016126im -0.15304047853302274 + 0.01511441183645645im … -0.015718294577762346 + 0.09525126199878609im 0.049831219765226316 + 0.010608510037939903im; -0.15030969295245356 - 7.01733257503943e-5im -0.07372508173528328 + 0.10848415785873397im … -0.0018405749865027451 - 0.05686519474996828im -0.0738721676727462 - 0.07241344815718188im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.017609523075042724 - 0.0005213955678448584im 0.010972871629214166 - 0.04200902642526128im … -0.12820476587493873 + 0.04381029775886455im -0.018553947803443733 + 0.029109691228500982im; -0.02668923407119548 - 0.03866580824754474im -0.05383596878855306 - 0.04119253110583762im … -0.027088138888172228 + 0.029963688391371854im -0.005117129293846135 - 0.011702800378821338im; … ; -0.11764350444499008 + 0.048776899917332604im -0.023060054891195787 + 0.10247835216215573im … 0.009956608290675451 - 0.03146733724433916im -0.07190985230605802 - 0.050376380642789334im; -0.023679237961042963 + 0.08213160716972097im 0.04041740485498785 + 0.03494611744903741im … -0.15197983882728128 - 0.06001061846759484im -0.12288753545783035 + 0.046253249047360015im;;; -0.025662469670329528 - 0.024607671082051415im 0.012982317095593197 - 0.00797546297143583im … -0.037507555907551116 + 0.07204744243043348im -0.01493014841398756 - 0.052711139850641714im; -0.1366724256699101 - 0.013430543800877374im -0.04133246188052215 + 0.020965485390906365im … -0.014777743926094935 - 0.029662859901794035im -0.098390933142649 - 0.07138855844380441im; … ; 0.03399624842450757 + 0.0830208921796837im 0.05282166220517028 + 0.025722515775906982im … -0.06602494003575345 + 0.0010627168320902214im -0.0470712161005648 + 0.06923951191599764im; 0.044401965754915625 + 0.006145509782054778im 0.032689933943559096 + 0.011268802534347443im … -0.12115450778479941 + 0.07887772922664651im 0.01649701774313171 + 0.05826083061450062im;;; 0.003826242840445658 + 0.033584987757442314im 0.06766309677804548 - 0.0032897364818988556im … -0.022534872208913165 + 0.03227431288743231im -0.06154933025834943 + 0.008188482775515381im; -0.03557856833812074 + 0.0352585290903356im 0.018552874080113618 + 0.05348152103486825im … -0.1091287905925784 - 0.03137789900280453im -0.15043463703469923 + 0.035549179424536025im; … ; 0.04365238667156682 + 0.04599643842173557im 0.03890334517621577 + 0.033956063871636605im … -0.05374777712271625 + 0.057894925230491785im 0.007884336223394985 + 0.0758891640422883im; 0.045218250542978046 + 0.0532957182984842im 0.09103591945532775 + 0.042156605273151335im … -0.04174724756633608 + 0.10366439603366154im 0.013950794639100188 + 0.06286657170706719im;;; … ;;; -0.009626775568378862 - 0.04000379879879411im -0.08724761873365434 - 0.0073280132969720385im … 0.050973065784234745 - 0.03699458978021804im 0.021518595883153233 + 0.0003477890979460829im; -0.02052394527378399 - 0.007851943944990496im -0.032825159454325924 + 0.03510646631233663im … -0.0012215400401468582 - 0.026415609941262273im 0.01856842905975533 + 0.004298190291356675im; … ; -0.08180115308974631 + 0.13955166496414237im 0.03696996665067906 + 0.046791342638190264im … -0.05577854629738191 - 0.08450164418358902im -0.16784415135620942 + 0.009677293021144im; 0.0515819845337973 + 0.04391819202652247im -0.010668984846046076 - 0.055160199492657117im … -0.010566106936767024 + 0.020768275438270874im -0.021266297002486844 + 0.0792632631721291im;;; -0.0875936704169489 - 0.0021230494941646694im -0.06438028960484966 + 0.09700407069227657im … 0.014452009284489972 - 0.0523292301165742im -0.020643848894527854 - 0.038337223798455874im; -0.005206968610003382 + 0.008140806314583554im 0.023139777206729096 + 0.023346727215446245im … 0.02519575582187586 + 0.017019269767994984im 0.05883864590572738 - 0.010174398739945032im; … ; 0.06486359078877733 + 0.04168358273109251im -0.03263739327155672 - 0.07714141716005718im … -0.1228562487109654 + 0.040302974480928754im -0.05632276488359218 + 0.1427608014327939im; -0.03746695177411515 - 0.101039901117013im -0.15507888625949823 - 0.01130012906224062im … 0.029651284605817986 + 0.02628022192379184im 0.05113945313245809 - 0.01819085887063424im;;; -0.033674905122091287 + 0.05329869007536632im 0.04370924506978016 + 0.01237045854068394im … -0.06272560706612493 - 0.025192595446535404im -0.019888839127355836 + 0.01357104655031251im; 0.010022543678552806 - 0.015128981511626071im -0.02211761794439348 - 0.06322587841918278im … 0.025460056234778698 + 0.0074827574685507395im 0.015093796886082991 - 0.021949384147045118im; … ; -0.06429102906114367 - 0.09119797242016126im -0.15304047853302274 + 0.01511441183645645im … -0.015718294577762346 + 0.09525126199878609im 0.049831219765226316 + 0.010608510037939903im; -0.15030969295245356 - 7.01733257503943e-5im -0.07372508173528328 + 0.10848415785873397im … -0.0018405749865027451 - 0.05686519474996828im -0.0738721676727462 - 0.07241344815718188im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.017609523075042724 - 0.0005213955678448584im 0.010972871629214166 - 0.04200902642526128im … -0.12820476587493873 + 0.04381029775886455im -0.018553947803443733 + 0.029109691228500982im; -0.02668923407119548 - 0.03866580824754474im -0.05383596878855306 - 0.04119253110583762im … -0.027088138888172228 + 0.029963688391371854im -0.005117129293846135 - 0.011702800378821338im; … ; -0.11764350444499008 + 0.048776899917332604im -0.023060054891195787 + 0.10247835216215573im … 0.009956608290675451 - 0.03146733724433916im -0.07190985230605802 - 0.050376380642789334im; -0.023679237961042963 + 0.08213160716972097im 0.04041740485498785 + 0.03494611744903741im … -0.15197983882728128 - 0.06001061846759484im -0.12288753545783035 + 0.046253249047360015im;;; -0.025662469670329528 - 0.024607671082051415im 0.012982317095593197 - 0.00797546297143583im … -0.037507555907551116 + 0.07204744243043348im -0.01493014841398756 - 0.052711139850641714im; -0.1366724256699101 - 0.013430543800877374im -0.04133246188052215 + 0.020965485390906365im … -0.014777743926094935 - 0.029662859901794035im -0.098390933142649 - 0.07138855844380441im; … ; 0.03399624842450757 + 0.0830208921796837im 0.05282166220517028 + 0.025722515775906982im … -0.06602494003575345 + 0.0010627168320902214im -0.0470712161005648 + 0.06923951191599764im; 0.044401965754915625 + 0.006145509782054778im 0.032689933943559096 + 0.011268802534347443im … -0.12115450778479941 + 0.07887772922664651im 0.01649701774313171 + 0.05826083061450062im;;; 0.003826242840445658 + 0.033584987757442314im 0.06766309677804548 - 0.0032897364818988556im … -0.022534872208913165 + 0.03227431288743231im -0.06154933025834943 + 0.008188482775515381im; -0.03557856833812074 + 0.0352585290903356im 0.018552874080113618 + 0.05348152103486825im … -0.1091287905925784 - 0.03137789900280453im -0.15043463703469923 + 0.035549179424536025im; … ; 0.04365238667156682 + 0.04599643842173557im 0.03890334517621577 + 0.033956063871636605im … -0.05374777712271625 + 0.057894925230491785im 0.007884336223394985 + 0.0758891640422883im; 0.045218250542978046 + 0.0532957182984842im 0.09103591945532775 + 0.042156605273151335im … -0.04174724756633608 + 0.10366439603366154im 0.013950794639100188 + 0.06286657170706719im;;; … ;;; -0.009626775568378862 - 0.04000379879879411im -0.08724761873365434 - 0.0073280132969720385im … 0.050973065784234745 - 0.03699458978021804im 0.021518595883153233 + 0.0003477890979460829im; -0.02052394527378399 - 0.007851943944990496im -0.032825159454325924 + 0.03510646631233663im … -0.0012215400401468582 - 0.026415609941262273im 0.01856842905975533 + 0.004298190291356675im; … ; -0.08180115308974631 + 0.13955166496414237im 0.03696996665067906 + 0.046791342638190264im … -0.05577854629738191 - 0.08450164418358902im -0.16784415135620942 + 0.009677293021144im; 0.0515819845337973 + 0.04391819202652247im -0.010668984846046076 - 0.055160199492657117im … -0.010566106936767024 + 0.020768275438270874im -0.021266297002486844 + 0.0792632631721291im;;; -0.0875936704169489 - 0.0021230494941646694im -0.06438028960484966 + 0.09700407069227657im … 0.014452009284489972 - 0.0523292301165742im -0.020643848894527854 - 0.038337223798455874im; -0.005206968610003382 + 0.008140806314583554im 0.023139777206729096 + 0.023346727215446245im … 0.02519575582187586 + 0.017019269767994984im 0.05883864590572738 - 0.010174398739945032im; … ; 0.06486359078877733 + 0.04168358273109251im -0.03263739327155672 - 0.07714141716005718im … -0.1228562487109654 + 0.040302974480928754im -0.05632276488359218 + 0.1427608014327939im; -0.03746695177411515 - 0.101039901117013im -0.15507888625949823 - 0.01130012906224062im … 0.029651284605817986 + 0.02628022192379184im 0.05113945313245809 - 0.01819085887063424im;;; -0.033674905122091287 + 0.05329869007536632im 0.04370924506978016 + 0.01237045854068394im … -0.06272560706612493 - 0.025192595446535404im -0.019888839127355836 + 0.01357104655031251im; 0.010022543678552806 - 0.015128981511626071im -0.02211761794439348 - 0.06322587841918278im … 0.025460056234778698 + 0.0074827574685507395im 0.015093796886082991 - 0.021949384147045118im; … ; -0.06429102906114367 - 0.09119797242016126im -0.15304047853302274 + 0.01511441183645645im … -0.015718294577762346 + 0.09525126199878609im 0.049831219765226316 + 0.010608510037939903im; -0.15030969295245356 - 7.01733257503943e-5im -0.07372508173528328 + 0.10848415785873397im … -0.0018405749865027451 - 0.05686519474996828im -0.0738721676727462 - 0.07241344815718188im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668722521 -11.100308396741548 … -8.28984577241175 -11.100308396741609; -11.100308396741548 -9.130057825947098 … -9.130057795895805 -11.100308356758571; … ; -8.28984577241175 -9.130057795895805 … -4.149589921642653 -6.287956198198612; -11.100308396741607 -11.100308356758573 … -6.287956198198613 -9.111848223576676;;; -11.10030839674155 -9.130057825947096 … -9.130057795895807 -11.100308356758573; -9.130057825947098 -6.9031594819815085 … -9.13005782729678 -10.053883826551402; … ; -9.130057795895805 -9.13005782729678 … -5.294353669213744 -7.54739920652095; -11.100308356758571 -10.053883826551402 … -7.547399206520952 -10.053883826551507;;; -8.28984577241205 -6.307621931516103 … -8.289845781011003 -9.111848193525347; -6.307621931516104 -4.516655665815154 … -7.547399237610782 -7.547399206521184; … ; -8.289845781011003 -7.547399237610782 … -5.7689690835805765 -7.547399237610853; -9.111848193525345 -7.547399206521184 … -7.547399237610855 -9.111848224926582;;; … ;;; -5.301031718249166 -6.307621955788311 … -2.5497035732754663 -3.849582179387219; -6.307621955788311 -6.903159495208337 … -3.329060698545693 -4.878419358630033; … ; -2.549703573275466 -3.3290606985456934 … -1.2567984709020656 -1.8141947460405685; -3.8495821793872196 -4.878419358630035 … -1.8141947460405685 -2.714767335322062;;; -8.289845772411754 -9.130057795895805 … -4.1495899216426535 -6.287956198198612; -9.130057795895807 -9.130057827296778 … -5.294353669213742 -7.54739920652095; … ; -4.1495899216426535 -5.294353669213743 … -1.909449239914808 -2.8946123678516944; -6.2879561981986125 -7.54739920652095 … -2.8946123678516944 -4.4855427593713815;;; -11.100308396741609 -11.100308356758573 … -6.287956198198613 -9.111848223576676; -11.100308356758571 -10.0538838265514 … -7.547399206520953 -10.053883826551507; … ; -6.287956198198612 -7.547399206520953 … -2.8946123678516944 -4.485542759371381; -9.111848223576676 -10.053883826551507 … -4.4855427593713815 -6.871104500134521]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.017609523075042724 - 0.0005213955678448584im 0.010972871629214166 - 0.04200902642526128im … -0.12820476587493873 + 0.04381029775886455im -0.018553947803443733 + 0.029109691228500982im; -0.02668923407119548 - 0.03866580824754474im -0.05383596878855306 - 0.04119253110583762im … -0.027088138888172228 + 0.029963688391371854im -0.005117129293846135 - 0.011702800378821338im; … ; -0.11764350444499008 + 0.048776899917332604im -0.023060054891195787 + 0.10247835216215573im … 0.009956608290675451 - 0.03146733724433916im -0.07190985230605802 - 0.050376380642789334im; -0.023679237961042963 + 0.08213160716972097im 0.04041740485498785 + 0.03494611744903741im … -0.15197983882728128 - 0.06001061846759484im -0.12288753545783035 + 0.046253249047360015im;;; -0.025662469670329528 - 0.024607671082051415im 0.012982317095593197 - 0.00797546297143583im … -0.037507555907551116 + 0.07204744243043348im -0.01493014841398756 - 0.052711139850641714im; -0.1366724256699101 - 0.013430543800877374im -0.04133246188052215 + 0.020965485390906365im … -0.014777743926094935 - 0.029662859901794035im -0.098390933142649 - 0.07138855844380441im; … ; 0.03399624842450757 + 0.0830208921796837im 0.05282166220517028 + 0.025722515775906982im … -0.06602494003575345 + 0.0010627168320902214im -0.0470712161005648 + 0.06923951191599764im; 0.044401965754915625 + 0.006145509782054778im 0.032689933943559096 + 0.011268802534347443im … -0.12115450778479941 + 0.07887772922664651im 0.01649701774313171 + 0.05826083061450062im;;; 0.003826242840445658 + 0.033584987757442314im 0.06766309677804548 - 0.0032897364818988556im … -0.022534872208913165 + 0.03227431288743231im -0.06154933025834943 + 0.008188482775515381im; -0.03557856833812074 + 0.0352585290903356im 0.018552874080113618 + 0.05348152103486825im … -0.1091287905925784 - 0.03137789900280453im -0.15043463703469923 + 0.035549179424536025im; … ; 0.04365238667156682 + 0.04599643842173557im 0.03890334517621577 + 0.033956063871636605im … -0.05374777712271625 + 0.057894925230491785im 0.007884336223394985 + 0.0758891640422883im; 0.045218250542978046 + 0.0532957182984842im 0.09103591945532775 + 0.042156605273151335im … -0.04174724756633608 + 0.10366439603366154im 0.013950794639100188 + 0.06286657170706719im;;; … ;;; -0.009626775568378862 - 0.04000379879879411im -0.08724761873365434 - 0.0073280132969720385im … 0.050973065784234745 - 0.03699458978021804im 0.021518595883153233 + 0.0003477890979460829im; -0.02052394527378399 - 0.007851943944990496im -0.032825159454325924 + 0.03510646631233663im … -0.0012215400401468582 - 0.026415609941262273im 0.01856842905975533 + 0.004298190291356675im; … ; -0.08180115308974631 + 0.13955166496414237im 0.03696996665067906 + 0.046791342638190264im … -0.05577854629738191 - 0.08450164418358902im -0.16784415135620942 + 0.009677293021144im; 0.0515819845337973 + 0.04391819202652247im -0.010668984846046076 - 0.055160199492657117im … -0.010566106936767024 + 0.020768275438270874im -0.021266297002486844 + 0.0792632631721291im;;; -0.0875936704169489 - 0.0021230494941646694im -0.06438028960484966 + 0.09700407069227657im … 0.014452009284489972 - 0.0523292301165742im -0.020643848894527854 - 0.038337223798455874im; -0.005206968610003382 + 0.008140806314583554im 0.023139777206729096 + 0.023346727215446245im … 0.02519575582187586 + 0.017019269767994984im 0.05883864590572738 - 0.010174398739945032im; … ; 0.06486359078877733 + 0.04168358273109251im -0.03263739327155672 - 0.07714141716005718im … -0.1228562487109654 + 0.040302974480928754im -0.05632276488359218 + 0.1427608014327939im; -0.03746695177411515 - 0.101039901117013im -0.15507888625949823 - 0.01130012906224062im … 0.029651284605817986 + 0.02628022192379184im 0.05113945313245809 - 0.01819085887063424im;;; -0.033674905122091287 + 0.05329869007536632im 0.04370924506978016 + 0.01237045854068394im … -0.06272560706612493 - 0.025192595446535404im -0.019888839127355836 + 0.01357104655031251im; 0.010022543678552806 - 0.015128981511626071im -0.02211761794439348 - 0.06322587841918278im … 0.025460056234778698 + 0.0074827574685507395im 0.015093796886082991 - 0.021949384147045118im; … ; -0.06429102906114367 - 0.09119797242016126im -0.15304047853302274 + 0.01511441183645645im … -0.015718294577762346 + 0.09525126199878609im 0.049831219765226316 + 0.010608510037939903im; -0.15030969295245356 - 7.01733257503943e-5im -0.07372508173528328 + 0.10848415785873397im … -0.0018405749865027451 - 0.05686519474996828im -0.0738721676727462 - 0.07241344815718188im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.589784542613735e-5 0.0011262712728446758 … 0.006697037550119687 0.0011262712728446758; 0.0011262712728446588 0.00527433445740419 … 0.005274334457404226 0.0011262712728446725; … ; 0.006697037550119677 0.005274334457404228 … 0.023244754191122846 0.012258986825295342; 0.0011262712728446708 0.0011262712728446725 … 0.012258986825295347 0.003770008629921507;;; 0.0011262712728446506 0.005274334457404209 … 0.005274334457404237 0.001126271272844676; 0.005274334457404192 0.014620065304789827 … 0.0052743344574042285 0.0025880808748702925; … ; 0.005274334457404228 0.0052743344574042225 … 0.018107686646210545 0.00892200304479321; 0.001126271272844669 0.002588080874870292 … 0.008922003044793216 0.0025880808748703073;;; 0.006697037550119636 0.0164121091016725 … 0.006697037550119684 0.0037700086299214887; 0.016412109101672488 0.03127783931604068 … 0.008922003044793186 0.008922003044793172; … ; 0.006697037550119673 0.00892200304479318 … 0.01647675635951716 0.008922003044793203; 0.0037700086299214835 0.00892200304479317 … 0.008922003044793209 0.0037700086299214987;;; … ;;; 0.01985383985347625 0.016412109101672515 … 0.037156673635748975 0.02719080068665946; 0.016412109101672494 0.014620065304789836 … 0.03230127212653124 0.022322100931793994; … ; 0.03715667363574896 0.032301272126531236 … 0.04629698070149692 0.042636582731506764; 0.027190800686659453 0.022322100931793997 … 0.042636582731506764 0.03477222914207411;;; 0.006697037550119646 0.00527433445740421 … 0.023244754191122836 0.01225898682529532; 0.005274334457404192 0.00527433445740419 … 0.018107686646210517 0.008922003044793183; … ; 0.023244754191122822 0.01810768664621051 … 0.04037111033564066 0.03149160381145754; 0.012258986825295314 0.00892200304479318 … 0.03149160381145754 0.02004716343279993;;; 0.0011262712728446536 0.0011262712728446775 … 0.012258986825295342 0.003770008629921502; 0.0011262712728446601 0.002588080874870279 … 0.0089220030447932 0.002588080874870296; … ; 0.012258986825295328 0.008922003044793195 … 0.03149160381145755 0.02004716343279995; 0.003770008629921495 0.0025880808748702964 … 0.02004716343279995 0.008952603496810487;;;;], eigenvalues = [[-0.17836835654011574, 0.2624919449903391, 0.2624919449903393, 0.2624919449903398, 0.35469214816715006, 0.35469214816715067, 0.3546921481673328], [-0.1275503761800344, 0.06475320594603826, 0.22545166517314005, 0.22545166517314055, 0.32197764961072717, 0.3892227690843774, 0.389222769084378], [-0.10818729216593273, 0.07755003473332504, 0.17278328011386415, 0.17278328011386423, 0.2843518536196054, 0.3305476484329838, 0.5267232426380442], [-0.057773253745316805, 0.01272478220457054, 0.09766073750078383, 0.1841782533288376, 0.3152284179596975, 0.4720312185437921, 0.49791351785887245]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993049726, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.8232354808301297 - 0.4732726807336882im 8.392488022645896e-14 - 1.5298959610500565e-13im … -1.9864459066168055e-12 - 2.7599860585984844e-11im -7.945508831123115e-9 - 1.1196782608045023e-7im; -0.09592187244005922 + 0.025891921134695434im 0.03586965578165094 - 0.3312486876977952im … -0.5045940639238053 + 0.1467351489357082im -0.07607703488187811 + 0.060487419684700464im; … ; 0.010193614354151961 + 0.005860242062023739im -0.008910767367755331 - 0.022392400054460276im … 0.06611814029138072 + 0.037686331651681344im 0.0796867167865778 - 0.009354924507758744im; -0.09592187244006982 + 0.025891921134663782im -0.2376197886544534 + 0.24435904010419066im … 0.11114326332347414 - 0.02191390379833117im 0.34110990296844673 - 0.4676811551406307im], [0.4207508508785317 + 0.8195409190672777im 0.1785669159509672 - 0.09661981269151246im … 3.4095321448950724e-11 + 9.970741371171807e-11im 6.944557672682123e-11 + 1.1867311774352543e-10im; 0.05954883636353624 + 0.019146692003780774im -0.002571281134161319 + 0.00863462423423144im … -3.087784881332058e-11 + 1.5674333328010836e-11im 1.9563153971842416e-10 - 3.71072875585146e-10im; … ; -0.0022572517772492437 - 0.0043966879502185885im -0.07435226801434032 + 0.04023086903004172im … 0.009022853683112413 + 0.011956067202165395im 0.049370980745865226 - 0.0919075661420126im; 0.11130090675351687 + 0.0357864957820683im 0.028574435783836005 - 0.09595586901053034im … 0.06559554793968958 + 0.009171383353031252im -0.13300067576759453 - 0.44174072001702525im], [0.673892715083133 - 0.6344133281425577im 2.948351730205709e-14 - 5.350322076494384e-15im … 3.557819352657963e-11 + 1.0079195565018914e-10im 1.741301696728826e-9 + 2.5777519119716645e-9im; 0.002067129554478283 - 0.06850253506535589im 0.03955136357432676 - 0.034061348774495806im … 0.022305138813625475 + 0.01328316419789621im -0.004579446085209289 + 0.0063084287837707545im; … ; -0.007714267823640757 + 0.007262334515049842im 3.639903076282543e-15 + 1.1362514413578918e-14im … 1.0155204230581206e-10 + 6.03085200560981e-10im -0.03935006103319702 - 0.036160298520111156im; 0.004833230440073583 - 0.16016825698350043im -0.22220022068007336 + 0.191357225905443im … 0.31969861102558395 + 0.1903870301833351im -0.15540810337687616 + 0.00862472445419838im], [-0.7342447971967806 - 0.31591762632376424im 6.276234323107799e-15 + 5.853253921683743e-15im … 0.05490777311857295 + 0.17314670331180188im -1.1491021264249432e-5 - 8.82464264144921e-6im; -0.3640380277492267 + 0.1450128045221811im -0.6207713899797233 + 0.00031313372448484695im … -0.16157029336108028 - 0.08376926271481644im 6.565123584990315e-6 - 9.613617560126216e-7im; … ; 0.012172280911075846 + 0.005237269786663016im 0.00017960951461021792 + 0.00017942840627062834im … -0.003944892085479186 - 0.012438864957736566im -0.0014248916863428115 + 0.046074811747589546im; -0.062328333432183324 + 0.024828193054658877im 0.005313318895099542 - 2.6801804086456215e-6im … -0.12729850694681072 - 0.06600317319846846im 0.32278529056673033 + 0.3433370942557506im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835654011574, 0.2624919449903391, 0.2624919449903393, 0.2624919449903398, 0.35469214816715006, 0.35469214816715067, 0.3546921481673328], [-0.1275503761800344, 0.06475320594603826, 0.22545166517314005, 0.22545166517314055, 0.32197764961072717, 0.3892227690843774, 0.389222769084378], [-0.10818729216593273, 0.07755003473332504, 0.17278328011386415, 0.17278328011386423, 0.2843518536196054, 0.3305476484329838, 0.5267232426380442], [-0.057773253745316805, 0.01272478220457054, 0.09766073750078383, 0.1841782533288376, 0.3152284179596975, 0.4720312185437921, 0.49791351785887245]], X = [[-0.8232354808301297 - 0.4732726807336882im 8.392488022645896e-14 - 1.5298959610500565e-13im … -1.9864459066168055e-12 - 2.7599860585984844e-11im -7.945508831123115e-9 - 1.1196782608045023e-7im; -0.09592187244005922 + 0.025891921134695434im 0.03586965578165094 - 0.3312486876977952im … -0.5045940639238053 + 0.1467351489357082im -0.07607703488187811 + 0.060487419684700464im; … ; 0.010193614354151961 + 0.005860242062023739im -0.008910767367755331 - 0.022392400054460276im … 0.06611814029138072 + 0.037686331651681344im 0.0796867167865778 - 0.009354924507758744im; -0.09592187244006982 + 0.025891921134663782im -0.2376197886544534 + 0.24435904010419066im … 0.11114326332347414 - 0.02191390379833117im 0.34110990296844673 - 0.4676811551406307im], [0.4207508508785317 + 0.8195409190672777im 0.1785669159509672 - 0.09661981269151246im … 3.4095321448950724e-11 + 9.970741371171807e-11im 6.944557672682123e-11 + 1.1867311774352543e-10im; 0.05954883636353624 + 0.019146692003780774im -0.002571281134161319 + 0.00863462423423144im … -3.087784881332058e-11 + 1.5674333328010836e-11im 1.9563153971842416e-10 - 3.71072875585146e-10im; … ; -0.0022572517772492437 - 0.0043966879502185885im -0.07435226801434032 + 0.04023086903004172im … 0.009022853683112413 + 0.011956067202165395im 0.049370980745865226 - 0.0919075661420126im; 0.11130090675351687 + 0.0357864957820683im 0.028574435783836005 - 0.09595586901053034im … 0.06559554793968958 + 0.009171383353031252im -0.13300067576759453 - 0.44174072001702525im], [0.673892715083133 - 0.6344133281425577im 2.948351730205709e-14 - 5.350322076494384e-15im … 3.557819352657963e-11 + 1.0079195565018914e-10im 1.741301696728826e-9 + 2.5777519119716645e-9im; 0.002067129554478283 - 0.06850253506535589im 0.03955136357432676 - 0.034061348774495806im … 0.022305138813625475 + 0.01328316419789621im -0.004579446085209289 + 0.0063084287837707545im; … ; -0.007714267823640757 + 0.007262334515049842im 3.639903076282543e-15 + 1.1362514413578918e-14im … 1.0155204230581206e-10 + 6.03085200560981e-10im -0.03935006103319702 - 0.036160298520111156im; 0.004833230440073583 - 0.16016825698350043im -0.22220022068007336 + 0.191357225905443im … 0.31969861102558395 + 0.1903870301833351im -0.15540810337687616 + 0.00862472445419838im], [-0.7342447971967806 - 0.31591762632376424im 6.276234323107799e-15 + 5.853253921683743e-15im … 0.05490777311857295 + 0.17314670331180188im -1.1491021264249432e-5 - 8.82464264144921e-6im; -0.3640380277492267 + 0.1450128045221811im -0.6207713899797233 + 0.00031313372448484695im … -0.16157029336108028 - 0.08376926271481644im 6.565123584990315e-6 - 9.613617560126216e-7im; … ; 0.012172280911075846 + 0.005237269786663016im 0.00017960951461021792 + 0.00017942840627062834im … -0.003944892085479186 - 0.012438864957736566im -0.0014248916863428115 + 0.046074811747589546im; -0.062328333432183324 + 0.024828193054658877im 0.005313318895099542 - 2.6801804086456215e-6im … -0.12729850694681072 - 0.06600317319846846im 0.32278529056673033 + 0.3433370942557506im]], residual_norms = [[0.0, 0.0, 2.302126335440556e-12, 2.0832621307020784e-13, 1.5351452473633216e-10, 1.6658287538462833e-10, 6.829523418665031e-7], [0.0, 0.0, 3.798324176205538e-12, 3.8761031581443054e-12, 5.692142665988463e-10, 1.2885535000698808e-8, 1.1980817210427435e-8], [1.156094411256357e-12, 1.6560803853796909e-12, 2.45024066335738e-12, 3.785664575657666e-12, 1.3040240233209618e-10, 3.1615838605967632e-9, 3.0156189838986297e-7], [9.539125745204216e-13, 9.844052190269142e-13, 9.633877700160808e-13, 2.557021548626821e-12, 3.973639415700535e-10, 2.6889874454049294e-5, 1.94495716726536e-5]], n_iter = [5, 3, 3, 3], converged = 1, n_matvec = 121)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2106925286186198, 0.02760224045389728, 0.0023086161054013407, 0.0002564213959019149, 9.380744124358093e-6, 8.510150308575061e-7, 3.957987056500923e-8, 3.206923917900027e-9, 1.5112108271464645e-10, 2.6746782142039883e-11], history_Etot = [-7.90526371473773, -7.910544398286851, -7.910593458674191, -7.910594393443629, -7.910594396448976, -7.910594396488429, -7.910594396488505, -7.910594396488506, -7.910594396488506, -7.910594396488504], occupation_threshold = 1.0e-6, seed = 0xcbe6a69455379efc, runtime_ns = 0x0000000082bf49c2)