Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#801"{DFTK.var"#anderson#800#802"{Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.012988259660813524 + 0.0025226698216778524im 0.010452856278252067 + 0.00436532230894393im … -0.023103920618650714 - 0.027029251845217im -0.01991399095995925 - 0.006013775731887155im; 0.00971823357305574 - 0.011289124642146948im 0.00012652785713498037 - 0.038433556019170284im … -0.02586537180375754 - 0.0025563998073128286im -0.008818023531543456 + 0.0029443509433226545im; … ; 0.00669736102743902 + 0.001967993620213501im -0.002042765036174633 - 0.013743677166546156im … -0.0075240746652768704 - 0.000751991607577834im -0.008403880001686844 + 0.0056993862075820755im; 0.0027279362014327184 - 0.011069018140841276im -0.015203623639506027 - 0.0004753667112790184im … -3.95521475636991e-5 - 0.011612350832703356im -0.001966572325760562 - 0.002940460627064297im;;; 0.058855595900401486 + 0.051097387165839135im 0.07835906708652059 - 0.011615068061184827im … -0.04383179080603072 + 0.023318831226175327im 0.0015545692868905725 + 0.07744397328219468im; 0.027620594043822947 - 0.038737034379199155im -0.024222995687149 - 0.015274039948184454im … 0.006905345246622793 + 0.06445617620614033im 0.06758554648192983 + 0.027809847768221353im; … ; 0.016498089341844553 - 0.031161542319513763im -0.010794399754688589 - 0.012279535508251414im … 0.019175256652425008 + 0.010948341700764154im 0.033974699675145964 - 0.008798377641776189im; -0.006092917104218134 + 0.025005623286372874im 0.02130788038871751 + 0.031230234671533047im … 0.006937711125834939 - 0.016622496561746095im -0.010025795216450105 + 0.0004450748887153168im;;; 0.062896469714977 - 0.01653480840255319im 0.028587871241006327 - 0.045393629271641964im … -0.004561376977958907 + 0.01889503116286137im 0.04380440240569443 + 0.026086240225689887im; -0.04699213922000144 + 0.016792888703818863im -0.0015784852525512327 + 0.0777224628412783im … 0.03150147133808764 + 0.00907493078310221im 0.007235375435406505 - 0.02819391013521841im; … ; -0.007405985594252609 - 0.010338422065719206im 0.018873396780325107 + 0.017074395325695373im … 0.026161337534474943 - 0.01438860824952389im 0.01062318444383151 - 0.02893925593266128im; 0.035948471608935134 + 0.03228416242669212im 0.07379829912037528 - 0.006647970930479732im … -0.006911552009683034 - 0.013464860952491612im -0.0060896668762447405 + 0.01321528591891865im;;; … ;;; -0.08335122313284199 - 0.08008695617351874im -0.05049463586721052 - 0.020781680821653038im … 0.024817606504078556 - 0.06734146174101502im -0.03356819568774962 - 0.14119133039176024im; -0.05478057871284764 - 0.023857388900448334im -0.019511335593620983 - 0.014187780681356718im … -0.00598025917882551 - 0.08201607784925535im -0.07755185561671091 - 0.08527392026773895im; … ; -0.04757964665490016 + 0.014973983083539135im -0.009519389480635014 + 0.013034280471572748im … -0.04926727804598215 - 0.03751460026235623im -0.07438137200032774 - 0.011547410352207906im; -0.025592428113764984 - 0.03919402575047966im -0.017560729735851342 - 0.023018007158400224im … -0.05340740455904419 - 0.016404982396195998im -0.02333749533560733 - 0.027370744310610817im;;; -0.07868174759964114 - 0.023914133097935296im -0.03545841952063779 - 0.011889194729132788im … -0.02117182562552443 - 0.1485603217231815im -0.10899579288853968 - 0.09645844752711999im; 0.015388658069926349 - 0.08467820207719015im -0.023828000759288863 - 0.06919053226123563im … -0.04571726722734656 - 0.0640181792793291im -0.007909761668216761 - 0.03384852480743729im; … ; -0.023917142905994622 - 0.001323381696956583im -0.00876572078731186 - 0.005833595415687966im … -0.06503745474745642 - 0.0030468878342658507im -0.04448148789735852 + 0.013815335982652208im; -0.05712975643459542 - 0.043708033412108924im -0.03425864266803922 - 0.019167516326073053im … 0.005078561062974771 - 0.04107412906584364im -0.03164903293246982 - 0.0738921788869438im;;; -0.02468527705392856 - 0.02835377877892243im -0.017825486273167632 + 0.0019080267647295186im … -0.05798715929593968 - 0.07242031833714228im -0.04791493194387128 - 0.022052452966587137im; -0.029799524476598362 - 0.09763332936188765im -0.04055257900384489 - 0.053599328347846795im … -0.0016520646285558072 - 0.029223329922326936im 0.02776209250217453 - 0.08749114795609891im; … ; -0.03216387942366263 - 0.01239830501738906im -0.01763772439316003 - 0.007356564417551354im … -0.002893598865572538 - 0.011894709349086015im -0.022650154040473457 - 0.034856618709278114im; -0.06306998617026732 - 0.003701446733893622im -0.031507222608477804 + 0.0016610654807477365im … -0.012763819409255733 - 0.0765810045975565im -0.06391257252576579 - 0.04505019764322067im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.012988259660813524 + 0.0025226698216778524im 0.010452856278252067 + 0.00436532230894393im … -0.023103920618650714 - 0.027029251845217im -0.01991399095995925 - 0.006013775731887155im; 0.00971823357305574 - 0.011289124642146948im 0.00012652785713498037 - 0.038433556019170284im … -0.02586537180375754 - 0.0025563998073128286im -0.008818023531543456 + 0.0029443509433226545im; … ; 0.00669736102743902 + 0.001967993620213501im -0.002042765036174633 - 0.013743677166546156im … -0.0075240746652768704 - 0.000751991607577834im -0.008403880001686844 + 0.0056993862075820755im; 0.0027279362014327184 - 0.011069018140841276im -0.015203623639506027 - 0.0004753667112790184im … -3.95521475636991e-5 - 0.011612350832703356im -0.001966572325760562 - 0.002940460627064297im;;; 0.058855595900401486 + 0.051097387165839135im 0.07835906708652059 - 0.011615068061184827im … -0.04383179080603072 + 0.023318831226175327im 0.0015545692868905725 + 0.07744397328219468im; 0.027620594043822947 - 0.038737034379199155im -0.024222995687149 - 0.015274039948184454im … 0.006905345246622793 + 0.06445617620614033im 0.06758554648192983 + 0.027809847768221353im; … ; 0.016498089341844553 - 0.031161542319513763im -0.010794399754688589 - 0.012279535508251414im … 0.019175256652425008 + 0.010948341700764154im 0.033974699675145964 - 0.008798377641776189im; -0.006092917104218134 + 0.025005623286372874im 0.02130788038871751 + 0.031230234671533047im … 0.006937711125834939 - 0.016622496561746095im -0.010025795216450105 + 0.0004450748887153168im;;; 0.062896469714977 - 0.01653480840255319im 0.028587871241006327 - 0.045393629271641964im … -0.004561376977958907 + 0.01889503116286137im 0.04380440240569443 + 0.026086240225689887im; -0.04699213922000144 + 0.016792888703818863im -0.0015784852525512327 + 0.0777224628412783im … 0.03150147133808764 + 0.00907493078310221im 0.007235375435406505 - 0.02819391013521841im; … ; -0.007405985594252609 - 0.010338422065719206im 0.018873396780325107 + 0.017074395325695373im … 0.026161337534474943 - 0.01438860824952389im 0.01062318444383151 - 0.02893925593266128im; 0.035948471608935134 + 0.03228416242669212im 0.07379829912037528 - 0.006647970930479732im … -0.006911552009683034 - 0.013464860952491612im -0.0060896668762447405 + 0.01321528591891865im;;; … ;;; -0.08335122313284199 - 0.08008695617351874im -0.05049463586721052 - 0.020781680821653038im … 0.024817606504078556 - 0.06734146174101502im -0.03356819568774962 - 0.14119133039176024im; -0.05478057871284764 - 0.023857388900448334im -0.019511335593620983 - 0.014187780681356718im … -0.00598025917882551 - 0.08201607784925535im -0.07755185561671091 - 0.08527392026773895im; … ; -0.04757964665490016 + 0.014973983083539135im -0.009519389480635014 + 0.013034280471572748im … -0.04926727804598215 - 0.03751460026235623im -0.07438137200032774 - 0.011547410352207906im; -0.025592428113764984 - 0.03919402575047966im -0.017560729735851342 - 0.023018007158400224im … -0.05340740455904419 - 0.016404982396195998im -0.02333749533560733 - 0.027370744310610817im;;; -0.07868174759964114 - 0.023914133097935296im -0.03545841952063779 - 0.011889194729132788im … -0.02117182562552443 - 0.1485603217231815im -0.10899579288853968 - 0.09645844752711999im; 0.015388658069926349 - 0.08467820207719015im -0.023828000759288863 - 0.06919053226123563im … -0.04571726722734656 - 0.0640181792793291im -0.007909761668216761 - 0.03384852480743729im; … ; -0.023917142905994622 - 0.001323381696956583im -0.00876572078731186 - 0.005833595415687966im … -0.06503745474745642 - 0.0030468878342658507im -0.04448148789735852 + 0.013815335982652208im; -0.05712975643459542 - 0.043708033412108924im -0.03425864266803922 - 0.019167516326073053im … 0.005078561062974771 - 0.04107412906584364im -0.03164903293246982 - 0.0738921788869438im;;; -0.02468527705392856 - 0.02835377877892243im -0.017825486273167632 + 0.0019080267647295186im … -0.05798715929593968 - 0.07242031833714228im -0.04791493194387128 - 0.022052452966587137im; -0.029799524476598362 - 0.09763332936188765im -0.04055257900384489 - 0.053599328347846795im … -0.0016520646285558072 - 0.029223329922326936im 0.02776209250217453 - 0.08749114795609891im; … ; -0.03216387942366263 - 0.01239830501738906im -0.01763772439316003 - 0.007356564417551354im … -0.002893598865572538 - 0.011894709349086015im -0.022650154040473457 - 0.034856618709278114im; -0.06306998617026732 - 0.003701446733893622im -0.031507222608477804 + 0.0016610654807477365im … -0.012763819409255733 - 0.0765810045975565im -0.06391257252576579 - 0.04505019764322067im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.012988259660813524 + 0.0025226698216778524im 0.010452856278252067 + 0.00436532230894393im … -0.023103920618650714 - 0.027029251845217im -0.01991399095995925 - 0.006013775731887155im; 0.00971823357305574 - 0.011289124642146948im 0.00012652785713498037 - 0.038433556019170284im … -0.02586537180375754 - 0.0025563998073128286im -0.008818023531543456 + 0.0029443509433226545im; … ; 0.00669736102743902 + 0.001967993620213501im -0.002042765036174633 - 0.013743677166546156im … -0.0075240746652768704 - 0.000751991607577834im -0.008403880001686844 + 0.0056993862075820755im; 0.0027279362014327184 - 0.011069018140841276im -0.015203623639506027 - 0.0004753667112790184im … -3.95521475636991e-5 - 0.011612350832703356im -0.001966572325760562 - 0.002940460627064297im;;; 0.058855595900401486 + 0.051097387165839135im 0.07835906708652059 - 0.011615068061184827im … -0.04383179080603072 + 0.023318831226175327im 0.0015545692868905725 + 0.07744397328219468im; 0.027620594043822947 - 0.038737034379199155im -0.024222995687149 - 0.015274039948184454im … 0.006905345246622793 + 0.06445617620614033im 0.06758554648192983 + 0.027809847768221353im; … ; 0.016498089341844553 - 0.031161542319513763im -0.010794399754688589 - 0.012279535508251414im … 0.019175256652425008 + 0.010948341700764154im 0.033974699675145964 - 0.008798377641776189im; -0.006092917104218134 + 0.025005623286372874im 0.02130788038871751 + 0.031230234671533047im … 0.006937711125834939 - 0.016622496561746095im -0.010025795216450105 + 0.0004450748887153168im;;; 0.062896469714977 - 0.01653480840255319im 0.028587871241006327 - 0.045393629271641964im … -0.004561376977958907 + 0.01889503116286137im 0.04380440240569443 + 0.026086240225689887im; -0.04699213922000144 + 0.016792888703818863im -0.0015784852525512327 + 0.0777224628412783im … 0.03150147133808764 + 0.00907493078310221im 0.007235375435406505 - 0.02819391013521841im; … ; -0.007405985594252609 - 0.010338422065719206im 0.018873396780325107 + 0.017074395325695373im … 0.026161337534474943 - 0.01438860824952389im 0.01062318444383151 - 0.02893925593266128im; 0.035948471608935134 + 0.03228416242669212im 0.07379829912037528 - 0.006647970930479732im … -0.006911552009683034 - 0.013464860952491612im -0.0060896668762447405 + 0.01321528591891865im;;; … ;;; -0.08335122313284199 - 0.08008695617351874im -0.05049463586721052 - 0.020781680821653038im … 0.024817606504078556 - 0.06734146174101502im -0.03356819568774962 - 0.14119133039176024im; -0.05478057871284764 - 0.023857388900448334im -0.019511335593620983 - 0.014187780681356718im … -0.00598025917882551 - 0.08201607784925535im -0.07755185561671091 - 0.08527392026773895im; … ; -0.04757964665490016 + 0.014973983083539135im -0.009519389480635014 + 0.013034280471572748im … -0.04926727804598215 - 0.03751460026235623im -0.07438137200032774 - 0.011547410352207906im; -0.025592428113764984 - 0.03919402575047966im -0.017560729735851342 - 0.023018007158400224im … -0.05340740455904419 - 0.016404982396195998im -0.02333749533560733 - 0.027370744310610817im;;; -0.07868174759964114 - 0.023914133097935296im -0.03545841952063779 - 0.011889194729132788im … -0.02117182562552443 - 0.1485603217231815im -0.10899579288853968 - 0.09645844752711999im; 0.015388658069926349 - 0.08467820207719015im -0.023828000759288863 - 0.06919053226123563im … -0.04571726722734656 - 0.0640181792793291im -0.007909761668216761 - 0.03384852480743729im; … ; -0.023917142905994622 - 0.001323381696956583im -0.00876572078731186 - 0.005833595415687966im … -0.06503745474745642 - 0.0030468878342658507im -0.04448148789735852 + 0.013815335982652208im; -0.05712975643459542 - 0.043708033412108924im -0.03425864266803922 - 0.019167516326073053im … 0.005078561062974771 - 0.04107412906584364im -0.03164903293246982 - 0.0738921788869438im;;; -0.02468527705392856 - 0.02835377877892243im -0.017825486273167632 + 0.0019080267647295186im … -0.05798715929593968 - 0.07242031833714228im -0.04791493194387128 - 0.022052452966587137im; -0.029799524476598362 - 0.09763332936188765im -0.04055257900384489 - 0.053599328347846795im … -0.0016520646285558072 - 0.029223329922326936im 0.02776209250217453 - 0.08749114795609891im; … ; -0.03216387942366263 - 0.01239830501738906im -0.01763772439316003 - 0.007356564417551354im … -0.002893598865572538 - 0.011894709349086015im -0.022650154040473457 - 0.034856618709278114im; -0.06306998617026732 - 0.003701446733893622im -0.031507222608477804 + 0.0016610654807477365im … -0.012763819409255733 - 0.0765810045975565im -0.06391257252576579 - 0.04505019764322067im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.24756966872665 -11.100308396744346 … -8.289845772414202 -11.100308396744406; -11.100308396744346 -9.130057825949983 … -9.13005779589869 -11.100308356761369; … ; -8.289845772414202 -9.13005779589869 … -4.14958992164417 -6.287956198200419; -11.100308396744405 -11.10030835676137 … -6.28795619820042 -9.111848223578754;;; -11.100308396744348 -9.130057825949981 … -9.130057795898692 -11.10030835676137; -9.130057825949983 -6.903159481984459 … -9.130057827299664 -10.05388382655398; … ; -9.13005779589869 -9.130057827299664 … -5.2943536692156385 -7.547399206523266; -11.100308356761369 -10.05388382655398 … -7.5473992065232665 -10.053883826554086;;; -8.2898457724145 -6.307621931518764 … -8.289845781013454 -9.111848193527424; -6.307621931518765 -4.5166556658178685 … -7.547399237613098 -7.547399206523498; … ; -8.289845781013453 -7.547399237613097 … -5.768969083582672 -7.547399237613169; -9.111848193527424 -7.547399206523498 … -7.5473992376131696 -9.11184822492866;;; … ;;; -5.301031718251359 -6.307621955790972 … -2.5497035732769016 -3.8495821793889213; -6.307621955790972 -6.903159495211288 … -3.3290606985473965 -4.8784193586321365; … ; -2.549703573276901 -3.329060698547397 … -1.2567984709032112 -1.814194746041823; -3.8495821793889218 -4.878419358632138 … -1.814194746041823 -2.71476733532346;;; -8.289845772414203 -9.13005779589869 … -4.149589921644171 -6.287956198200418; -9.130057795898692 -9.130057827299662 … -5.294353669215637 -7.547399206523265; … ; -4.149589921644171 -5.294353669215639 … -1.9094492399159966 -2.8946123678529676; -6.287956198200419 -7.547399206523265 … -2.894612367852967 -4.485542759372784;;; -11.100308396744406 -11.10030835676137 … -6.28795619820042 -9.111848223578752; -11.100308356761369 -10.05388382655398 … -7.547399206523267 -10.053883826554085; … ; -6.287956198200418 -7.547399206523267 … -2.894612367852967 -4.485542759372784; -9.111848223578754 -10.053883826554085 … -4.485542759372785 -6.871104500136061]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.012988259660813524 + 0.0025226698216778524im 0.010452856278252067 + 0.00436532230894393im … -0.023103920618650714 - 0.027029251845217im -0.01991399095995925 - 0.006013775731887155im; 0.00971823357305574 - 0.011289124642146948im 0.00012652785713498037 - 0.038433556019170284im … -0.02586537180375754 - 0.0025563998073128286im -0.008818023531543456 + 0.0029443509433226545im; … ; 0.00669736102743902 + 0.001967993620213501im -0.002042765036174633 - 0.013743677166546156im … -0.0075240746652768704 - 0.000751991607577834im -0.008403880001686844 + 0.0056993862075820755im; 0.0027279362014327184 - 0.011069018140841276im -0.015203623639506027 - 0.0004753667112790184im … -3.95521475636991e-5 - 0.011612350832703356im -0.001966572325760562 - 0.002940460627064297im;;; 0.058855595900401486 + 0.051097387165839135im 0.07835906708652059 - 0.011615068061184827im … -0.04383179080603072 + 0.023318831226175327im 0.0015545692868905725 + 0.07744397328219468im; 0.027620594043822947 - 0.038737034379199155im -0.024222995687149 - 0.015274039948184454im … 0.006905345246622793 + 0.06445617620614033im 0.06758554648192983 + 0.027809847768221353im; … ; 0.016498089341844553 - 0.031161542319513763im -0.010794399754688589 - 0.012279535508251414im … 0.019175256652425008 + 0.010948341700764154im 0.033974699675145964 - 0.008798377641776189im; -0.006092917104218134 + 0.025005623286372874im 0.02130788038871751 + 0.031230234671533047im … 0.006937711125834939 - 0.016622496561746095im -0.010025795216450105 + 0.0004450748887153168im;;; 0.062896469714977 - 0.01653480840255319im 0.028587871241006327 - 0.045393629271641964im … -0.004561376977958907 + 0.01889503116286137im 0.04380440240569443 + 0.026086240225689887im; -0.04699213922000144 + 0.016792888703818863im -0.0015784852525512327 + 0.0777224628412783im … 0.03150147133808764 + 0.00907493078310221im 0.007235375435406505 - 0.02819391013521841im; … ; -0.007405985594252609 - 0.010338422065719206im 0.018873396780325107 + 0.017074395325695373im … 0.026161337534474943 - 0.01438860824952389im 0.01062318444383151 - 0.02893925593266128im; 0.035948471608935134 + 0.03228416242669212im 0.07379829912037528 - 0.006647970930479732im … -0.006911552009683034 - 0.013464860952491612im -0.0060896668762447405 + 0.01321528591891865im;;; … ;;; -0.08335122313284199 - 0.08008695617351874im -0.05049463586721052 - 0.020781680821653038im … 0.024817606504078556 - 0.06734146174101502im -0.03356819568774962 - 0.14119133039176024im; -0.05478057871284764 - 0.023857388900448334im -0.019511335593620983 - 0.014187780681356718im … -0.00598025917882551 - 0.08201607784925535im -0.07755185561671091 - 0.08527392026773895im; … ; -0.04757964665490016 + 0.014973983083539135im -0.009519389480635014 + 0.013034280471572748im … -0.04926727804598215 - 0.03751460026235623im -0.07438137200032774 - 0.011547410352207906im; -0.025592428113764984 - 0.03919402575047966im -0.017560729735851342 - 0.023018007158400224im … -0.05340740455904419 - 0.016404982396195998im -0.02333749533560733 - 0.027370744310610817im;;; -0.07868174759964114 - 0.023914133097935296im -0.03545841952063779 - 0.011889194729132788im … -0.02117182562552443 - 0.1485603217231815im -0.10899579288853968 - 0.09645844752711999im; 0.015388658069926349 - 0.08467820207719015im -0.023828000759288863 - 0.06919053226123563im … -0.04571726722734656 - 0.0640181792793291im -0.007909761668216761 - 0.03384852480743729im; … ; -0.023917142905994622 - 0.001323381696956583im -0.00876572078731186 - 0.005833595415687966im … -0.06503745474745642 - 0.0030468878342658507im -0.04448148789735852 + 0.013815335982652208im; -0.05712975643459542 - 0.043708033412108924im -0.03425864266803922 - 0.019167516326073053im … 0.005078561062974771 - 0.04107412906584364im -0.03164903293246982 - 0.0738921788869438im;;; -0.02468527705392856 - 0.02835377877892243im -0.017825486273167632 + 0.0019080267647295186im … -0.05798715929593968 - 0.07242031833714228im -0.04791493194387128 - 0.022052452966587137im; -0.029799524476598362 - 0.09763332936188765im -0.04055257900384489 - 0.053599328347846795im … -0.0016520646285558072 - 0.029223329922326936im 0.02776209250217453 - 0.08749114795609891im; … ; -0.03216387942366263 - 0.01239830501738906im -0.01763772439316003 - 0.007356564417551354im … -0.002893598865572538 - 0.011894709349086015im -0.022650154040473457 - 0.034856618709278114im; -0.06306998617026732 - 0.003701446733893622im -0.031507222608477804 + 0.0016610654807477365im … -0.012763819409255733 - 0.0765810045975565im -0.06391257252576579 - 0.04505019764322067im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784543370324e-5 0.0011262712728572406 … 0.00669703755012865 0.001126271272857244; 0.0011262712728572473 0.0052743344574484406 … 0.005274334457448471 0.001126271272857244; … ; 0.0066970375501286695 0.005274334457448488 … 0.023244754190935267 0.012258986825212865; 0.0011262712728572575 0.001126271272857254 … 0.012258986825212852 0.003770008629902849;;; 0.001126271272857233 0.005274334457448445 … 0.005274334457448473 0.0011262712728572423; 0.005274334457448453 0.014620065304889924 … 0.0052743344574484674 0.0025880808748816107; … ; 0.005274334457448497 0.0052743344574484805 … 0.018107686646120853 0.008922003044787921; 0.0011262712728572592 0.002588080874881618 … 0.008922003044787916 0.0025880808748816354;;; 0.006697037550128614 0.016412109101727367 … 0.006697037550128641 0.0037700086299028226; 0.016412109101727374 0.03127783931613366 … 0.00892200304478788 0.008922003044787866; … ; 0.006697037550128661 0.008922003044787892 … 0.016476756359469078 0.008922003044787925; 0.003770008629902843 0.008922003044787874 … 0.008922003044787912 0.0037700086299028456;;; … ;;; 0.019853839853441795 0.01641210910172738 … 0.037156673635497774 0.027190800686498196; 0.016412109101727388 0.014620065304889929 … 0.03230127212635506 0.022322100931737025; … ; 0.03715667363549779 0.03230127212635507 … 0.04629698070126948 0.04263658273123073; 0.027190800686498214 0.022322100931737032 … 0.04263658273123072 0.03477222914181903;;; 0.00669703755012862 0.005274334457448449 … 0.023244754190935225 0.012258986825212809; 0.005274334457448456 0.005274334457448446 … 0.018107686646120794 0.008922003044787876; … ; 0.023244754190935243 0.01810768664612081 … 0.040371110335349666 0.031491603811182343; 0.01225898682521283 0.008922003044787881 … 0.031491603811182343 0.020047163432605146;;; 0.0011262712728572347 0.0011262712728572397 … 0.012258986825212832 0.0037700086299028287; 0.001126271272857246 0.0025880808748816077 … 0.008922003044787885 0.002588080874881614; … ; 0.012258986825212854 0.0089220030447879 … 0.03149160381118236 0.020047163432605174; 0.0037700086299028456 0.0025880808748816207 … 0.020047163432605167 0.008952603496711719;;;;], eigenvalues = [[-0.178368356537485, 0.26249194499415723, 0.26249194499415746, 0.2624919449941575, 0.3546921481691672, 0.35469214816916766, 0.35469214817076444], [-0.12755037617717357, 0.0647532059487254, 0.22545166517657694, 0.2254516651765776, 0.3219776496131041, 0.389222769086112, 0.3892227690861123], [-0.10818729216304773, 0.07755003473695027, 0.1727832801166747, 0.17278328011667488, 0.2843518536205048, 0.3305476484334853, 0.5267232426409927], [-0.05777325374202145, 0.012724782207822836, 0.09766073750243628, 0.18417825333180185, 0.3152284179605704, 0.47203121856875574, 0.49791351757923485]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993073312, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.9475028394251639 + 0.06278579863836187im -6.126550154420472e-14 + 5.494831674583048e-15im … 8.088938202731257e-12 + 7.268245989769011e-13im -1.838416263343387e-7 + 3.2373708125318196e-9im; -0.06545559653717622 + 0.07474598366526215im -0.30598057963899067 + 0.38316331146417937im … -0.2962517601209631 + 0.12312007987983432im 0.2387398148652451 + 0.262199730266136im; … ; 0.01173233997971049 - 0.0007774376021034864im -0.035139612426077035 - 0.003080595486092967im … 0.03686415465601394 + 0.04566442588608935im -0.029484487730516835 - 0.021360867385930807im; -0.0654555965372014 + 0.07474598366524245im 0.059649851476698344 - 0.17654169902109715im … 0.19328329226986943 + 0.17532067770736381im -0.06285949082342551 + 0.3103853975351563im], [0.7216911093465994 - 0.572573610318754im -0.07508185961827116 + 0.18863787009136188im … 4.605896558251753e-11 + 5.6791812373652434e-11im -2.5292115168230077e-11 - 5.4177796956105327e-11im; 0.007159423099960877 - 0.06214018335770676im -0.00356308418188444 - 0.008274820447296258im … 5.302591818605655e-10 - 1.1942482947991316e-10im -3.275533295022052e-10 + 2.8242860372508776e-11im; … ; -0.003871741521076133 + 0.0030717532643140203im 0.03126282670898472 - 0.07854564435946156im … -0.05824644265883791 + 0.009000653724521274im -0.042213785293348405 - 0.07650614742794175im; 0.013381458505641175 - 0.11614431407736903im 0.03959626149089449 + 0.09195739912298864im … -0.15397857982413835 + 0.2102639155906329im -0.3712058848052631 - 0.10722316177751483im], [-0.7039844101682542 + 0.6008474120855015im -7.06205125807603e-14 + 4.9199921394980916e-14im … 3.983105851930572e-12 + 4.238439916793882e-12im 2.2388929180191508e-10 - 1.187010127284883e-10im; -0.0054002241021330385 + 0.06832062583522075im 0.01346084216635889 + 0.05043105758565421im … -0.024993369988005748 + 0.00702090842085154im 0.0013131004861910672 + 0.001071553507934514im; … ; 0.00805873718817375 - 0.006878094620149804im 1.1423707493495793e-13 - 2.920264796386352e-13im … -2.418895800693473e-11 - 2.501611279710084e-11im 0.05255701776366824 - 0.012597632962081166im; -0.012626459457812036 + 0.15974292842754234im -0.07562323595285768 - 0.28332252321331886im … -0.358228906561658 + 0.10063038150688673im 0.08186646781733557 - 0.132402882074825im], [-0.6486978860384759 + 0.4670229346449376im 5.694719803824298e-15 - 6.002184771577129e-15im … 0.18093116234014697 - 0.016100860439195765im -1.285766340148675e-6 - 7.367322207953983e-7im; -0.06297748759157798 + 0.38676379765774227im -0.14830169184423847 + 0.6027966695893123im … -0.11677770988748833 + 0.13959359496592225im 8.401335647894497e-7 - 3.079401817762804e-7im; … ; 0.01075408763591221 - 0.007742287550560284im 0.00021720781477789204 - 0.0001314339984980885im … -0.012997800545012487 + 0.0011573693654614954im -0.008254467280358559 - 0.04535320163793418im; -0.010782614853657353 + 0.06621929881563954im 0.0012693468066917587 - 0.00515946930930506im … -0.09201131616442239 + 0.11000126844730883im -0.3874865682271044 - 0.2681615920792615im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.178368356537485, 0.26249194499415723, 0.26249194499415746, 0.2624919449941575, 0.3546921481691672, 0.35469214816916766, 0.35469214817076444], [-0.12755037617717357, 0.0647532059487254, 0.22545166517657694, 0.2254516651765776, 0.3219776496131041, 0.389222769086112, 0.3892227690861123], [-0.10818729216304773, 0.07755003473695027, 0.1727832801166747, 0.17278328011667488, 0.2843518536205048, 0.3305476484334853, 0.5267232426409927], [-0.05777325374202145, 0.012724782207822836, 0.09766073750243628, 0.18417825333180185, 0.3152284179605704, 0.47203121856875574, 0.49791351757923485]], X = [[-0.9475028394251639 + 0.06278579863836187im -6.126550154420472e-14 + 5.494831674583048e-15im … 8.088938202731257e-12 + 7.268245989769011e-13im -1.838416263343387e-7 + 3.2373708125318196e-9im; -0.06545559653717622 + 0.07474598366526215im -0.30598057963899067 + 0.38316331146417937im … -0.2962517601209631 + 0.12312007987983432im 0.2387398148652451 + 0.262199730266136im; … ; 0.01173233997971049 - 0.0007774376021034864im -0.035139612426077035 - 0.003080595486092967im … 0.03686415465601394 + 0.04566442588608935im -0.029484487730516835 - 0.021360867385930807im; -0.0654555965372014 + 0.07474598366524245im 0.059649851476698344 - 0.17654169902109715im … 0.19328329226986943 + 0.17532067770736381im -0.06285949082342551 + 0.3103853975351563im], [0.7216911093465994 - 0.572573610318754im -0.07508185961827116 + 0.18863787009136188im … 4.605896558251753e-11 + 5.6791812373652434e-11im -2.5292115168230077e-11 - 5.4177796956105327e-11im; 0.007159423099960877 - 0.06214018335770676im -0.00356308418188444 - 0.008274820447296258im … 5.302591818605655e-10 - 1.1942482947991316e-10im -3.275533295022052e-10 + 2.8242860372508776e-11im; … ; -0.003871741521076133 + 0.0030717532643140203im 0.03126282670898472 - 0.07854564435946156im … -0.05824644265883791 + 0.009000653724521274im -0.042213785293348405 - 0.07650614742794175im; 0.013381458505641175 - 0.11614431407736903im 0.03959626149089449 + 0.09195739912298864im … -0.15397857982413835 + 0.2102639155906329im -0.3712058848052631 - 0.10722316177751483im], [-0.7039844101682542 + 0.6008474120855015im -7.06205125807603e-14 + 4.9199921394980916e-14im … 3.983105851930572e-12 + 4.238439916793882e-12im 2.2388929180191508e-10 - 1.187010127284883e-10im; -0.0054002241021330385 + 0.06832062583522075im 0.01346084216635889 + 0.05043105758565421im … -0.024993369988005748 + 0.00702090842085154im 0.0013131004861910672 + 0.001071553507934514im; … ; 0.00805873718817375 - 0.006878094620149804im 1.1423707493495793e-13 - 2.920264796386352e-13im … -2.418895800693473e-11 - 2.501611279710084e-11im 0.05255701776366824 - 0.012597632962081166im; -0.012626459457812036 + 0.15974292842754234im -0.07562323595285768 - 0.28332252321331886im … -0.358228906561658 + 0.10063038150688673im 0.08186646781733557 - 0.132402882074825im], [-0.6486978860384759 + 0.4670229346449376im 5.694719803824298e-15 - 6.002184771577129e-15im … 0.18093116234014697 - 0.016100860439195765im -1.285766340148675e-6 - 7.367322207953983e-7im; -0.06297748759157798 + 0.38676379765774227im -0.14830169184423847 + 0.6027966695893123im … -0.11677770988748833 + 0.13959359496592225im 8.401335647894497e-7 - 3.079401817762804e-7im; … ; 0.01075408763591221 - 0.007742287550560284im 0.00021720781477789204 - 0.0001314339984980885im … -0.012997800545012487 + 0.0011573693654614954im -0.008254467280358559 - 0.04535320163793418im; -0.010782614853657353 + 0.06621929881563954im 0.0012693468066917587 - 0.00515946930930506im … -0.09201131616442239 + 0.11000126844730883im -0.3874865682271044 - 0.2681615920792615im]], residual_norms = [[0.0, 0.0, 0.0, 1.0925825881285206e-11, 1.7321540859394094e-11, 6.139573885217129e-11, 1.388744786411748e-6], [3.6805292044339084e-12, 4.776640897139549e-12, 1.205803536797438e-11, 1.3208419527857206e-11, 6.135414045580074e-10, 4.629473475432836e-9, 4.867509088723921e-9], [4.75740980747775e-12, 7.343055767843236e-12, 6.767156319020558e-12, 9.99892258319811e-12, 1.672413165119564e-11, 4.094295096835504e-10, 6.580752768459176e-8], [2.6904706050446053e-12, 2.8903828790012476e-12, 3.0917167917690075e-12, 6.893367913481969e-12, 6.218195049594924e-10, 1.5282884392337735e-5, 2.5409155203159425e-6]], n_iter = [3, 2, 2, 2], converged = 1, n_matvec = 88)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2107019785686639, 0.02761891047935048, 0.0023112440943176375, 0.000258261468487234, 1.0157775581262167e-5, 1.0052671236563207e-6, 2.9784711905546826e-8, 2.5264388223074616e-9, 5.473149595407337e-10, 2.0717228431812022e-11], history_Etot = [-7.905259386781076, -7.910544353439606, -7.910593444939835, -7.910594393109779, -7.910594396437765, -7.9105943964884435, -7.910594396488506, -7.9105943964885075, -7.910594396488503, -7.910594396488506], occupation_threshold = 1.0e-6, seed = 0x548125aca963ba33, runtime_ns = 0x000000007efec91b)