Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#782"{DFTK.var"#anderson#781#783"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0015935063874669498 + 0.041764953861285314im 0.011634055500225123 - 0.035257077804840026im … 0.009285232920122437 - 0.004565472929409001im -0.032927296154417925 + 0.009742043860865983im; 0.020835242574151678 - 0.02997458725605119im -0.03812200719613577 - 0.02261846225881116im … -0.03679330962040049 + 0.0014573646691030473im -0.032978564514257874 + 0.026382661899376728im; … ; 0.03245378744043095 + 0.062345892334637845im 0.03607975711156451 + 0.029399823747849024im … -0.030916388517295654 + 0.0740761865624267im 0.008321091222093964 + 0.11058459093874458im; 0.002921873738588634 + 0.0311706953073541im 0.022277183969926728 + 0.0353355071086387im … 0.03648486091398569 + 0.07088959421755112im 0.05650862695624346 + 0.02941225222713551im;;; 0.03630625491491505 + 0.12180058324646217im 0.0894502104946049 + 0.0250310351032446im … 0.03055223116144122 - 0.013978820387802508im -0.05163508676553758 + 0.058939402168067125im; 0.07466752893301465 - 0.016048160528016366im -0.013713238151673766 + 0.027674033523054642im … -0.016052401168818987 + 0.025272334386059667im 0.0410498856203577 + 0.07131814810982123im; … ; 0.05518636274509717 - 0.06171244936399599im -0.0392855212013351 - 0.010696722026510928im … 0.002251182514529739 + 0.09763251874563536im 0.09802166465946155 + 0.056376059472565444im; -0.07507364049027092 + 0.02632044967079485im -2.0692909159382433e-5 + 0.0971822497108327im … 0.09489856908997997 + 0.050019198485290545im 0.04388443930926794 - 0.054249827817742007im;;; 0.1459832005199838 + 0.037018623055766815im 0.04299461898812567 - 0.08134756705750948im … -0.03558492646246521 - 0.004620360047772144im -0.00033506427318184123 + 0.11704852509080006im; -0.018919965279090022 - 0.02509474749620036im -0.04638911612733776 + 0.12771425696902763im … -0.010405553656297306 + 0.053729304381434646im 0.07581091255468692 + 0.022866431521693188im; … ; -0.07582313866643722 - 0.034930996790563204im -0.03167354165468944 + 0.07131000729100545im … 0.04470330258185021 + 0.03630842588568357im 0.03298513617655141 - 0.06121355156374347im; -0.033670314471141674 + 0.11952188028561782im 0.12236497085015727 + 0.04816609016444125im … 0.031221262275461893 - 0.03066686951445701im -0.08228395630035697 - 0.015177452951187734im;;; … ;;; -0.10980679493633055 - 0.13945566133175444im -0.008780936541338269 - 0.014258593904954896im … -0.01365154684036432 - 0.05959446172506551im -0.01928345745746151 - 0.17483950256032613im; -0.08045933027975415 - 0.037587955343011355im 0.025611853963339724 - 0.06251924093747249im … -0.06511318502115984 - 0.06444847714077512im -0.11763863229427315 - 0.10520078618573167im; … ; 0.04489449836448573 + 0.01055609261920655im 0.02702127764211018 + 0.007987888004497342im … 0.022694274517172323 - 0.0373912629026017im -0.04095964458563674 + 0.002780911182756732im; 0.03594404910229727 - 0.1268939388558612im 0.00019737670072779434 - 0.029593157977122683im … -0.0372933266031393 - 0.028237351849467646im 0.04006344223402021 - 0.03200300345835477im;;; -0.10687790834719113 - 0.030293574449193693im 0.08271816273346044 - 0.03564709143699549im … -0.009780681748596667 - 0.09163656060631506im -0.08603426949112838 - 0.14626225588505476im; 0.007551047170935913 - 0.0718273299567139im 0.023019774742523005 - 0.18134486750988485im … -0.08517644328161109 - 0.07852963680104505im -0.11055879202578309 - 0.06523618660992755im; … ; 0.05024847967135476 + 0.015652781243921016im 0.03186008809682403 + 0.02242700838406602im … -0.04436427054292845 - 0.013865897776404837im -0.04461680818148367 + 0.10026925661492697im; -0.05231918586761901 - 0.11295293126284335im 0.008504870052911874 + 0.010909909555198289im … -0.014967969560507288 + 0.010020365833472704im 0.04213884776075687 - 0.054135193629018766im;;; 0.016353180609322927 + 0.03219962942143031im 0.09406627704298719 - 0.10090923765457106im … -0.0290006991940807 - 0.06860835418391956im -0.08116148176720894 - 0.03159886013906183im; 0.010509588411449305 - 0.10735322650988835im -0.059570091626956374 - 0.1807045330543946im … -0.09551571383729374 - 0.04601928910503966im -0.06439279580208995 - 0.034237190532039975im; … ; -0.0008100884166480464 + 0.03977537034531263im 0.011173425880886463 + 0.05461774194334518im … -0.056097737547969775 + 0.05879394069127386im -0.007106566085107242 + 0.11453506120227927im; -0.08431031689330871 + 0.026367488116542142im 0.05242217967127972 + 0.06005885598432889im … 0.0113490518947552 + 0.025117607158295988im -0.002538874092546519 + 0.004968481177815835im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0015935063874669498 + 0.041764953861285314im 0.011634055500225123 - 0.035257077804840026im … 0.009285232920122437 - 0.004565472929409001im -0.032927296154417925 + 0.009742043860865983im; 0.020835242574151678 - 0.02997458725605119im -0.03812200719613577 - 0.02261846225881116im … -0.03679330962040049 + 0.0014573646691030473im -0.032978564514257874 + 0.026382661899376728im; … ; 0.03245378744043095 + 0.062345892334637845im 0.03607975711156451 + 0.029399823747849024im … -0.030916388517295654 + 0.0740761865624267im 0.008321091222093964 + 0.11058459093874458im; 0.002921873738588634 + 0.0311706953073541im 0.022277183969926728 + 0.0353355071086387im … 0.03648486091398569 + 0.07088959421755112im 0.05650862695624346 + 0.02941225222713551im;;; 0.03630625491491505 + 0.12180058324646217im 0.0894502104946049 + 0.0250310351032446im … 0.03055223116144122 - 0.013978820387802508im -0.05163508676553758 + 0.058939402168067125im; 0.07466752893301465 - 0.016048160528016366im -0.013713238151673766 + 0.027674033523054642im … -0.016052401168818987 + 0.025272334386059667im 0.0410498856203577 + 0.07131814810982123im; … ; 0.05518636274509717 - 0.06171244936399599im -0.0392855212013351 - 0.010696722026510928im … 0.002251182514529739 + 0.09763251874563536im 0.09802166465946155 + 0.056376059472565444im; -0.07507364049027092 + 0.02632044967079485im -2.0692909159382433e-5 + 0.0971822497108327im … 0.09489856908997997 + 0.050019198485290545im 0.04388443930926794 - 0.054249827817742007im;;; 0.1459832005199838 + 0.037018623055766815im 0.04299461898812567 - 0.08134756705750948im … -0.03558492646246521 - 0.004620360047772144im -0.00033506427318184123 + 0.11704852509080006im; -0.018919965279090022 - 0.02509474749620036im -0.04638911612733776 + 0.12771425696902763im … -0.010405553656297306 + 0.053729304381434646im 0.07581091255468692 + 0.022866431521693188im; … ; -0.07582313866643722 - 0.034930996790563204im -0.03167354165468944 + 0.07131000729100545im … 0.04470330258185021 + 0.03630842588568357im 0.03298513617655141 - 0.06121355156374347im; -0.033670314471141674 + 0.11952188028561782im 0.12236497085015727 + 0.04816609016444125im … 0.031221262275461893 - 0.03066686951445701im -0.08228395630035697 - 0.015177452951187734im;;; … ;;; -0.10980679493633055 - 0.13945566133175444im -0.008780936541338269 - 0.014258593904954896im … -0.01365154684036432 - 0.05959446172506551im -0.01928345745746151 - 0.17483950256032613im; -0.08045933027975415 - 0.037587955343011355im 0.025611853963339724 - 0.06251924093747249im … -0.06511318502115984 - 0.06444847714077512im -0.11763863229427315 - 0.10520078618573167im; … ; 0.04489449836448573 + 0.01055609261920655im 0.02702127764211018 + 0.007987888004497342im … 0.022694274517172323 - 0.0373912629026017im -0.04095964458563674 + 0.002780911182756732im; 0.03594404910229727 - 0.1268939388558612im 0.00019737670072779434 - 0.029593157977122683im … -0.0372933266031393 - 0.028237351849467646im 0.04006344223402021 - 0.03200300345835477im;;; -0.10687790834719113 - 0.030293574449193693im 0.08271816273346044 - 0.03564709143699549im … -0.009780681748596667 - 0.09163656060631506im -0.08603426949112838 - 0.14626225588505476im; 0.007551047170935913 - 0.0718273299567139im 0.023019774742523005 - 0.18134486750988485im … -0.08517644328161109 - 0.07852963680104505im -0.11055879202578309 - 0.06523618660992755im; … ; 0.05024847967135476 + 0.015652781243921016im 0.03186008809682403 + 0.02242700838406602im … -0.04436427054292845 - 0.013865897776404837im -0.04461680818148367 + 0.10026925661492697im; -0.05231918586761901 - 0.11295293126284335im 0.008504870052911874 + 0.010909909555198289im … -0.014967969560507288 + 0.010020365833472704im 0.04213884776075687 - 0.054135193629018766im;;; 0.016353180609322927 + 0.03219962942143031im 0.09406627704298719 - 0.10090923765457106im … -0.0290006991940807 - 0.06860835418391956im -0.08116148176720894 - 0.03159886013906183im; 0.010509588411449305 - 0.10735322650988835im -0.059570091626956374 - 0.1807045330543946im … -0.09551571383729374 - 0.04601928910503966im -0.06439279580208995 - 0.034237190532039975im; … ; -0.0008100884166480464 + 0.03977537034531263im 0.011173425880886463 + 0.05461774194334518im … -0.056097737547969775 + 0.05879394069127386im -0.007106566085107242 + 0.11453506120227927im; -0.08431031689330871 + 0.026367488116542142im 0.05242217967127972 + 0.06005885598432889im … 0.0113490518947552 + 0.025117607158295988im -0.002538874092546519 + 0.004968481177815835im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0015935063874669498 + 0.041764953861285314im 0.011634055500225123 - 0.035257077804840026im … 0.009285232920122437 - 0.004565472929409001im -0.032927296154417925 + 0.009742043860865983im; 0.020835242574151678 - 0.02997458725605119im -0.03812200719613577 - 0.02261846225881116im … -0.03679330962040049 + 0.0014573646691030473im -0.032978564514257874 + 0.026382661899376728im; … ; 0.03245378744043095 + 0.062345892334637845im 0.03607975711156451 + 0.029399823747849024im … -0.030916388517295654 + 0.0740761865624267im 0.008321091222093964 + 0.11058459093874458im; 0.002921873738588634 + 0.0311706953073541im 0.022277183969926728 + 0.0353355071086387im … 0.03648486091398569 + 0.07088959421755112im 0.05650862695624346 + 0.02941225222713551im;;; 0.03630625491491505 + 0.12180058324646217im 0.0894502104946049 + 0.0250310351032446im … 0.03055223116144122 - 0.013978820387802508im -0.05163508676553758 + 0.058939402168067125im; 0.07466752893301465 - 0.016048160528016366im -0.013713238151673766 + 0.027674033523054642im … -0.016052401168818987 + 0.025272334386059667im 0.0410498856203577 + 0.07131814810982123im; … ; 0.05518636274509717 - 0.06171244936399599im -0.0392855212013351 - 0.010696722026510928im … 0.002251182514529739 + 0.09763251874563536im 0.09802166465946155 + 0.056376059472565444im; -0.07507364049027092 + 0.02632044967079485im -2.0692909159382433e-5 + 0.0971822497108327im … 0.09489856908997997 + 0.050019198485290545im 0.04388443930926794 - 0.054249827817742007im;;; 0.1459832005199838 + 0.037018623055766815im 0.04299461898812567 - 0.08134756705750948im … -0.03558492646246521 - 0.004620360047772144im -0.00033506427318184123 + 0.11704852509080006im; -0.018919965279090022 - 0.02509474749620036im -0.04638911612733776 + 0.12771425696902763im … -0.010405553656297306 + 0.053729304381434646im 0.07581091255468692 + 0.022866431521693188im; … ; -0.07582313866643722 - 0.034930996790563204im -0.03167354165468944 + 0.07131000729100545im … 0.04470330258185021 + 0.03630842588568357im 0.03298513617655141 - 0.06121355156374347im; -0.033670314471141674 + 0.11952188028561782im 0.12236497085015727 + 0.04816609016444125im … 0.031221262275461893 - 0.03066686951445701im -0.08228395630035697 - 0.015177452951187734im;;; … ;;; -0.10980679493633055 - 0.13945566133175444im -0.008780936541338269 - 0.014258593904954896im … -0.01365154684036432 - 0.05959446172506551im -0.01928345745746151 - 0.17483950256032613im; -0.08045933027975415 - 0.037587955343011355im 0.025611853963339724 - 0.06251924093747249im … -0.06511318502115984 - 0.06444847714077512im -0.11763863229427315 - 0.10520078618573167im; … ; 0.04489449836448573 + 0.01055609261920655im 0.02702127764211018 + 0.007987888004497342im … 0.022694274517172323 - 0.0373912629026017im -0.04095964458563674 + 0.002780911182756732im; 0.03594404910229727 - 0.1268939388558612im 0.00019737670072779434 - 0.029593157977122683im … -0.0372933266031393 - 0.028237351849467646im 0.04006344223402021 - 0.03200300345835477im;;; -0.10687790834719113 - 0.030293574449193693im 0.08271816273346044 - 0.03564709143699549im … -0.009780681748596667 - 0.09163656060631506im -0.08603426949112838 - 0.14626225588505476im; 0.007551047170935913 - 0.0718273299567139im 0.023019774742523005 - 0.18134486750988485im … -0.08517644328161109 - 0.07852963680104505im -0.11055879202578309 - 0.06523618660992755im; … ; 0.05024847967135476 + 0.015652781243921016im 0.03186008809682403 + 0.02242700838406602im … -0.04436427054292845 - 0.013865897776404837im -0.04461680818148367 + 0.10026925661492697im; -0.05231918586761901 - 0.11295293126284335im 0.008504870052911874 + 0.010909909555198289im … -0.014967969560507288 + 0.010020365833472704im 0.04213884776075687 - 0.054135193629018766im;;; 0.016353180609322927 + 0.03219962942143031im 0.09406627704298719 - 0.10090923765457106im … -0.0290006991940807 - 0.06860835418391956im -0.08116148176720894 - 0.03159886013906183im; 0.010509588411449305 - 0.10735322650988835im -0.059570091626956374 - 0.1807045330543946im … -0.09551571383729374 - 0.04601928910503966im -0.06439279580208995 - 0.034237190532039975im; … ; -0.0008100884166480464 + 0.03977537034531263im 0.011173425880886463 + 0.05461774194334518im … -0.056097737547969775 + 0.05879394069127386im -0.007106566085107242 + 0.11453506120227927im; -0.08431031689330871 + 0.026367488116542142im 0.05242217967127972 + 0.06005885598432889im … 0.0113490518947552 + 0.025117607158295988im -0.002538874092546519 + 0.004968481177815835im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668724724 -11.100308396742397 … -8.28984577241249 -11.100308396742458; -11.100308396742397 -9.130057825947846 … -9.130057795896555 -11.10030835675942; … ; -8.28984577241249 -9.130057795896555 … -4.149589921643403 -6.287956198199357; -11.100308396742456 -11.100308356759422 … -6.287956198199358 -9.111848223577399;;; -11.100308396742399 -9.130057825947846 … -9.130057795896557 -11.100308356759422; -9.130057825947848 -6.903159481982275 … -9.130057827297529 -10.053883826552154; … ; -9.130057795896555 -9.130057827297529 … -5.294353669214494 -7.547399206521687; -11.10030835675942 -10.053883826552154 … -7.547399206521688 -10.053883826552259;;; -8.289845772412788 -6.307621931516867 … -8.289845781011742 -9.111848193526068; -6.307621931516869 -4.516655665815948 … -7.547399237611518 -7.547399206521919; … ; -8.28984578101174 -7.5473992376115175 … -5.7689690835813225 -7.54739923761159; -9.111848193526066 -7.547399206521918 … -7.547399237611591 -9.111848224927305;;; … ;;; -5.301031718249929 -6.307621955789075 … -2.5497035732761817 -3.8495821793879745; -6.307621955789076 -6.9031594952091035 … -3.3290606985464346 -4.878419358630794; … ; -2.549703573276181 -3.329060698546435 … -1.256798470902634 -1.8141947460412262; -3.849582179387973 -4.878419358630795 … -1.8141947460412258 -2.714767335322785;;; -8.289845772412491 -9.130057795896555 … -4.149589921643404 -6.287956198199356; -9.130057795896557 -9.130057827297525 … -5.294353669214492 -7.5473992065216855; … ; -4.149589921643404 -5.294353669214493 … -1.9094492399154723 -2.894612367852421; -6.287956198199357 -7.547399206521686 … -2.894612367852421 -4.485542759372133;;; -11.100308396742458 -11.100308356759422 … -6.287956198199358 -9.111848223577397; -11.10030835675942 -10.053883826552154 … -7.547399206521689 -10.053883826552259; … ; -6.287956198199356 -7.547399206521689 … -2.894612367852421 -4.485542759372133; -9.111848223577399 -10.053883826552259 … -4.485542759372134 -6.871104500135257]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0015935063874669498 + 0.041764953861285314im 0.011634055500225123 - 0.035257077804840026im … 0.009285232920122437 - 0.004565472929409001im -0.032927296154417925 + 0.009742043860865983im; 0.020835242574151678 - 0.02997458725605119im -0.03812200719613577 - 0.02261846225881116im … -0.03679330962040049 + 0.0014573646691030473im -0.032978564514257874 + 0.026382661899376728im; … ; 0.03245378744043095 + 0.062345892334637845im 0.03607975711156451 + 0.029399823747849024im … -0.030916388517295654 + 0.0740761865624267im 0.008321091222093964 + 0.11058459093874458im; 0.002921873738588634 + 0.0311706953073541im 0.022277183969926728 + 0.0353355071086387im … 0.03648486091398569 + 0.07088959421755112im 0.05650862695624346 + 0.02941225222713551im;;; 0.03630625491491505 + 0.12180058324646217im 0.0894502104946049 + 0.0250310351032446im … 0.03055223116144122 - 0.013978820387802508im -0.05163508676553758 + 0.058939402168067125im; 0.07466752893301465 - 0.016048160528016366im -0.013713238151673766 + 0.027674033523054642im … -0.016052401168818987 + 0.025272334386059667im 0.0410498856203577 + 0.07131814810982123im; … ; 0.05518636274509717 - 0.06171244936399599im -0.0392855212013351 - 0.010696722026510928im … 0.002251182514529739 + 0.09763251874563536im 0.09802166465946155 + 0.056376059472565444im; -0.07507364049027092 + 0.02632044967079485im -2.0692909159382433e-5 + 0.0971822497108327im … 0.09489856908997997 + 0.050019198485290545im 0.04388443930926794 - 0.054249827817742007im;;; 0.1459832005199838 + 0.037018623055766815im 0.04299461898812567 - 0.08134756705750948im … -0.03558492646246521 - 0.004620360047772144im -0.00033506427318184123 + 0.11704852509080006im; -0.018919965279090022 - 0.02509474749620036im -0.04638911612733776 + 0.12771425696902763im … -0.010405553656297306 + 0.053729304381434646im 0.07581091255468692 + 0.022866431521693188im; … ; -0.07582313866643722 - 0.034930996790563204im -0.03167354165468944 + 0.07131000729100545im … 0.04470330258185021 + 0.03630842588568357im 0.03298513617655141 - 0.06121355156374347im; -0.033670314471141674 + 0.11952188028561782im 0.12236497085015727 + 0.04816609016444125im … 0.031221262275461893 - 0.03066686951445701im -0.08228395630035697 - 0.015177452951187734im;;; … ;;; -0.10980679493633055 - 0.13945566133175444im -0.008780936541338269 - 0.014258593904954896im … -0.01365154684036432 - 0.05959446172506551im -0.01928345745746151 - 0.17483950256032613im; -0.08045933027975415 - 0.037587955343011355im 0.025611853963339724 - 0.06251924093747249im … -0.06511318502115984 - 0.06444847714077512im -0.11763863229427315 - 0.10520078618573167im; … ; 0.04489449836448573 + 0.01055609261920655im 0.02702127764211018 + 0.007987888004497342im … 0.022694274517172323 - 0.0373912629026017im -0.04095964458563674 + 0.002780911182756732im; 0.03594404910229727 - 0.1268939388558612im 0.00019737670072779434 - 0.029593157977122683im … -0.0372933266031393 - 0.028237351849467646im 0.04006344223402021 - 0.03200300345835477im;;; -0.10687790834719113 - 0.030293574449193693im 0.08271816273346044 - 0.03564709143699549im … -0.009780681748596667 - 0.09163656060631506im -0.08603426949112838 - 0.14626225588505476im; 0.007551047170935913 - 0.0718273299567139im 0.023019774742523005 - 0.18134486750988485im … -0.08517644328161109 - 0.07852963680104505im -0.11055879202578309 - 0.06523618660992755im; … ; 0.05024847967135476 + 0.015652781243921016im 0.03186008809682403 + 0.02242700838406602im … -0.04436427054292845 - 0.013865897776404837im -0.04461680818148367 + 0.10026925661492697im; -0.05231918586761901 - 0.11295293126284335im 0.008504870052911874 + 0.010909909555198289im … -0.014967969560507288 + 0.010020365833472704im 0.04213884776075687 - 0.054135193629018766im;;; 0.016353180609322927 + 0.03219962942143031im 0.09406627704298719 - 0.10090923765457106im … -0.0290006991940807 - 0.06860835418391956im -0.08116148176720894 - 0.03159886013906183im; 0.010509588411449305 - 0.10735322650988835im -0.059570091626956374 - 0.1807045330543946im … -0.09551571383729374 - 0.04601928910503966im -0.06439279580208995 - 0.034237190532039975im; … ; -0.0008100884166480464 + 0.03977537034531263im 0.011173425880886463 + 0.05461774194334518im … -0.056097737547969775 + 0.05879394069127386im -0.007106566085107242 + 0.11453506120227927im; -0.08431031689330871 + 0.026367488116542142im 0.05242217967127972 + 0.06005885598432889im … 0.0113490518947552 + 0.025117607158295988im -0.002538874092546519 + 0.004968481177815835im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784543068027e-5 0.0011262712728364935 … 0.006697037550081012 0.001126271272836497; 0.001126271272836497 0.005274334457371731 … 0.005274334457371782 0.0011262712728364918; … ; 0.006697037550081016 0.005274334457371783 … 0.023244754191051188 0.012258986825241404; 0.0011262712728365087 0.0011262712728365087 … 0.012258986825241399 0.0037700086298947818;;; 0.0011262712728364898 0.005274334457371748 … 0.005274334457371783 0.0011262712728364946; 0.005274334457371749 0.014620065304725923 … 0.00527433445737178 0.0025880808748507877; … ; 0.0052743344573717875 0.005274334457371783 … 0.01810768664614185 0.008922003044746288; 0.001126271272836505 0.0025880808748508107 … 0.008922003044746279 0.002588080874850828;;; 0.00669703755008097 0.016412109101604587 … 0.006697037550081006 0.003770008629894748; 0.016412109101604583 0.031277839315941296 … 0.008922003044746257 0.008922003044746229; … ; 0.00669703755008101 0.008922003044746262 … 0.016476756359449698 0.008922003044746283; 0.003770008629894763 0.008922003044746246 … 0.00892200304474628 0.003770008629894775;;; … ;;; 0.019853839853403686 0.0164121091016046 … 0.03715667363566299 0.02719080068657977; 0.016412109101604604 0.014620065304725921 … 0.03230127212644168 0.022322100931716066; … ; 0.03715667363566299 0.032301272126441676 … 0.0462969807014255 0.04263658273142642; 0.027190800686579784 0.022322100931716087 … 0.04263658273142641 0.034772229141992884;;; 0.006697037550080982 0.005274334457371751 … 0.023244754191051164 0.01225898682524136; 0.005274334457371753 0.0052743344573717345 … 0.018107686646141825 0.008922003044746237; … ; 0.023244754191051167 0.018107686646141825 … 0.040371110335564696 0.0314916038113827; 0.012258986825241373 0.008922003044746253 … 0.03149160381138269 0.020047163432735365;;; 0.0011262712728364937 0.0011262712728364948 … 0.01225898682524139 0.003770008629894752; 0.0011262712728364976 0.002588080874850787 … 0.008922003044746267 0.0025880808748507925; … ; 0.012258986825241392 0.008922003044746267 … 0.0314916038113827 0.020047163432735382; 0.003770008629894762 0.0025880808748508133 … 0.02004716343273538 0.008952603496766142;;;;], eigenvalues = [[-0.17836835653946878, 0.26249194499130535, 0.2624919449913053, 0.26249194499130535, 0.35469214816770095, 0.3546921481677009, 0.3546921481893283], [-0.1275503761793182, 0.06475320594670349, 0.22545166517402096, 0.22545166517402115, 0.3219776496113105, 0.3892227690848236, 0.38922276908482356], [-0.10818729216520943, 0.07755003473426456, 0.17278328011457503, 0.17278328011457497, 0.28435185361974613, 0.33054764843300544, 0.5267232426390273], [-0.05777325374447109, 0.012724782205402501, 0.09766073750114727, 0.18417825332959123, 0.3152284179598334, 0.47203121830138434, 0.49791351759959424]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930552574, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.9075707574435453 - 0.2793188276153531im -1.1828539599712725e-13 - 1.848625845757728e-13im … -1.9668002261020745e-13 - 1.9741605113594443e-13im -8.631493319277958e-7 + 1.1320897838585941e-6im; -0.08781176605989016 + 0.046481081461329996im -0.18500931441591698 + 0.18977355437531407im … 0.40219666806053334 + 0.3447226936298795im -0.0915144633420859 + 0.24506747871962492im; … ; 0.011237885776191737 + 0.0034586317971754834im 0.00031972864857093396 - 0.030767198463626154im … 0.01209284289233267 - 0.07099611286207061im 0.04644592634818783 - 0.059212793604501886im; -0.08781176605987857 + 0.04648108146132399im -0.011225814061334207 - 0.3901300100278625im … 0.05279994801492997 - 0.1481363382619654im -0.1672446401782976 - 0.3816675972012353im], [0.8225542608487445 - 0.41482898223384285im -0.1710607684015715 + 0.10936061992577477im … -4.402517490466246e-11 + 6.369505586238835e-11im 2.8253542552258415e-10 + 4.0283843663544643e-10im; 0.01957568895138913 - 0.05940919229373856im 0.001935985793762993 - 0.008798873867839405im … 9.148848223770665e-10 + 1.3992526766013577e-10im 4.620458062604743e-10 + 2.558618234668e-10im; … ; -0.0044128539808233475 + 0.002225482029286389im 0.07122683410408857 - 0.04553592741201516im … -0.010654771336036168 - 0.10285003370630666im -0.004152165022344719 + 0.019999004793139163im; 0.03658832084159797 - 0.11103990229825013im -0.02151445091203964 + 0.09778116168109936im … -0.35489955435438786 - 0.28827024263919265im 0.04954888254439703 + 0.07551433082470083im], [-0.7822181188295831 + 0.4947185835832154im -1.2550059515247466e-14 + 1.0104918874520618e-14im … 1.7763016952217962e-12 - 2.986432779328266e-12im 1.3025943623988118e-8 + 1.1505097059660492e-8im; -0.015053394499243023 + 0.0668600452363293im 0.04375613815124649 - 0.028458499872933463im … -0.01640436449161028 + 0.020121096554887263im 0.0006556425506032127 + 0.0021879868413058555im; … ; 0.008954303749125573 - 0.005663203601559135im -7.832123913826349e-14 + 2.6333450257822864e-14im … 5.410836955797807e-11 - 2.0870767330329135e-12im -0.05364724257959789 - 0.0053787501259899536im; -0.03519688660175058 + 0.1563278920570055im -0.24582271443134776 + 0.15988032726366383im … -0.2351230570486378 + 0.28839481833344094im -0.12005450863701826 + 0.0990922595272559im], [-0.7949488796879791 + 0.08352034193073371im 1.1544039378819352e-14 + 3.401531159097004e-15im … -0.049407782631409235 - 0.1747936288418595im -2.248696286898159e-6 - 2.0912395045897525e-7im; -0.24661617666819843 + 0.3045207062388245im -0.5239793588914317 + 0.33287061769754783im … 0.15884153711801316 + 0.08883301956507542im 1.4199958054353795e-6 - 3.324552912957744e-7im; … ; 0.013178630765171935 - 0.0013845968914612196im 0.0002477897975685156 + 5.526614643522094e-5im … 0.003549897369421522 + 0.012558046175843992im 0.04535715818411567 + 0.008234349034946216im; -0.04222409231295618 + 0.05213814675562599im 0.004484854607087382 - 0.002849112847743102im … 0.12515398368960623 + 0.06999466034715571im 0.3873803594620587 - 0.2683352922131134im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653946878, 0.26249194499130535, 0.2624919449913053, 0.26249194499130535, 0.35469214816770095, 0.3546921481677009, 0.3546921481893283], [-0.1275503761793182, 0.06475320594670349, 0.22545166517402096, 0.22545166517402115, 0.3219776496113105, 0.3892227690848236, 0.38922276908482356], [-0.10818729216520943, 0.07755003473426456, 0.17278328011457503, 0.17278328011457497, 0.28435185361974613, 0.33054764843300544, 0.5267232426390273], [-0.05777325374447109, 0.012724782205402501, 0.09766073750114727, 0.18417825332959123, 0.3152284179598334, 0.47203121830138434, 0.49791351759959424]], X = [[-0.9075707574435453 - 0.2793188276153531im -1.1828539599712725e-13 - 1.848625845757728e-13im … -1.9668002261020745e-13 - 1.9741605113594443e-13im -8.631493319277958e-7 + 1.1320897838585941e-6im; -0.08781176605989016 + 0.046481081461329996im -0.18500931441591698 + 0.18977355437531407im … 0.40219666806053334 + 0.3447226936298795im -0.0915144633420859 + 0.24506747871962492im; … ; 0.011237885776191737 + 0.0034586317971754834im 0.00031972864857093396 - 0.030767198463626154im … 0.01209284289233267 - 0.07099611286207061im 0.04644592634818783 - 0.059212793604501886im; -0.08781176605987857 + 0.04648108146132399im -0.011225814061334207 - 0.3901300100278625im … 0.05279994801492997 - 0.1481363382619654im -0.1672446401782976 - 0.3816675972012353im], [0.8225542608487445 - 0.41482898223384285im -0.1710607684015715 + 0.10936061992577477im … -4.402517490466246e-11 + 6.369505586238835e-11im 2.8253542552258415e-10 + 4.0283843663544643e-10im; 0.01957568895138913 - 0.05940919229373856im 0.001935985793762993 - 0.008798873867839405im … 9.148848223770665e-10 + 1.3992526766013577e-10im 4.620458062604743e-10 + 2.558618234668e-10im; … ; -0.0044128539808233475 + 0.002225482029286389im 0.07122683410408857 - 0.04553592741201516im … -0.010654771336036168 - 0.10285003370630666im -0.004152165022344719 + 0.019999004793139163im; 0.03658832084159797 - 0.11103990229825013im -0.02151445091203964 + 0.09778116168109936im … -0.35489955435438786 - 0.28827024263919265im 0.04954888254439703 + 0.07551433082470083im], [-0.7822181188295831 + 0.4947185835832154im -1.2550059515247466e-14 + 1.0104918874520618e-14im … 1.7763016952217962e-12 - 2.986432779328266e-12im 1.3025943623988118e-8 + 1.1505097059660492e-8im; -0.015053394499243023 + 0.0668600452363293im 0.04375613815124649 - 0.028458499872933463im … -0.01640436449161028 + 0.020121096554887263im 0.0006556425506032127 + 0.0021879868413058555im; … ; 0.008954303749125573 - 0.005663203601559135im -7.832123913826349e-14 + 2.6333450257822864e-14im … 5.410836955797807e-11 - 2.0870767330329135e-12im -0.05364724257959789 - 0.0053787501259899536im; -0.03519688660175058 + 0.1563278920570055im -0.24582271443134776 + 0.15988032726366383im … -0.2351230570486378 + 0.28839481833344094im -0.12005450863701826 + 0.0990922595272559im], [-0.7949488796879791 + 0.08352034193073371im 1.1544039378819352e-14 + 3.401531159097004e-15im … -0.049407782631409235 - 0.1747936288418595im -2.248696286898159e-6 - 2.0912395045897525e-7im; -0.24661617666819843 + 0.3045207062388245im -0.5239793588914317 + 0.33287061769754783im … 0.15884153711801316 + 0.08883301956507542im 1.4199958054353795e-6 - 3.324552912957744e-7im; … ; 0.013178630765171935 - 0.0013845968914612196im 0.0002477897975685156 + 5.526614643522094e-5im … 0.003549897369421522 + 0.012558046175843992im 0.04535715818411567 + 0.008234349034946216im; -0.04222409231295618 + 0.05213814675562599im 0.004484854607087382 - 0.002849112847743102im … 0.12515398368960623 + 0.06999466034715571im 0.3873803594620587 - 0.2683352922131134im]], residual_norms = [[1.4144623153610866e-12, 3.575101963913202e-12, 2.3957181729174835e-12, 3.090417185450336e-12, 2.933037211155571e-11, 2.752349149112773e-12, 6.369466787550719e-6], [2.6328229645590466e-12, 3.635973768134504e-12, 3.827209594812333e-12, 3.513791463405671e-12, 3.4315174840432325e-10, 1.4902662019782404e-8, 1.2744790105773837e-8], [1.0752043655895234e-12, 1.7485356670217176e-12, 2.592514075971522e-12, 2.1853006354580214e-12, 1.814681067433249e-11, 7.326558442166054e-10, 6.787323639301008e-7], [8.153062618761885e-13, 6.637938120579228e-13, 6.745179887569818e-13, 1.7346500590651417e-12, 7.91126149052273e-11, 9.661426236743633e-6, 4.8114495247688136e-6]], n_iter = [5, 3, 3, 3], converged = 1, n_matvec = 118)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069507369605492, 0.02759491796644817, 0.0023112630571383097, 0.00025866106244740053, 9.66778497126743e-6, 1.093762707667161e-6, 4.200048012580978e-8, 2.7387157379853597e-9, 1.5332560321206688e-10, 1.5034347678337007e-11], history_Etot = [-7.905265702131772, -7.9105440025271285, -7.9105934441858965, -7.910594393173872, -7.910594396438423, -7.910594396488429, -7.910594396488504, -7.910594396488505, -7.910594396488505, -7.910594396488506], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009a003c69)