Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model. Values up to1e-2atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solvertoself_consistent_field, e.g.solver = scf_anderson_solver(; m=15)(::DFTK.var"#anderson#916"{DFTK.var"#anderson#915#917"{Int64, Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)All keyword arguments are passed through to
DFTK.AndersonAcceleration.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiffparameter of theAdaptiveDiagtolalgorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBandsalgorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)AdaptiveBands(4, 7, 1.0e-6, 0.01)Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptiveinstead ofself_consistent_field:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.02860310607492581 + 0.0040169220264130836im -0.009588108937382508 + 0.044113740457586745im … -0.02642182223420309 + 0.031246911376238272im -0.01148574596930287 + 0.023115927276857004im; -0.045160505468573156 + 0.027679546963370327im -0.02691335069581362 + 0.07510263164954195im … -0.00020299796862634917 - 0.006566013693059094im -0.02078106470345503 + 0.009210662068496654im; … ; 0.06987861264617146 - 0.03800097870654607im 0.011640331736196012 - 0.05724945534630868im … -0.002335598982431703 - 0.01796506976130801im -0.0028364310973141614 + 0.003414733032925172im; -0.0025309903175525037 - 0.03554111490371856im -0.016906965572779008 + 0.026677578093788425im … -0.058411742439739345 + 0.0011813978045269113im -0.011474447004905677 + 0.012459145789074127im;;; -0.011327177891001308 + 0.04223543794639903im 0.0033517383425310937 - 0.011550882636966414im … -0.006102758368718809 + 0.03570287651411373im -0.0523948674137641 + 0.03311461741807416im; -0.022895531879916685 + 0.023334225483791313im 0.012762296694206615 + 0.028516508382271405im … 0.0013086750573504651 + 0.0189294582100273im -0.007134065735702987 + 0.03458816262068064im; … ; -0.04377929499871559 - 0.053306698644247794im -0.04999145885017402 + 0.02689931048640972im … -0.10443211159304033 + 0.0929157176850494im 0.0018535310025672852 + 0.031140883893538834im; -0.06334483513808006 + 0.03933802728098153im 0.04256490723487376 + 0.05389927454467576im … -0.03491056245284385 + 0.10108733799434233im -0.06299827428052455 - 0.0001793869021927347im;;; -0.007158324595243823 + 0.0158575775353002im -0.07010410249565296 - 0.015763553522946172im … -0.10463544395950493 + 0.04493995689325911im -0.07645100229499185 + 0.14312629820916978im; -0.04710229194684458 + 0.00945755898961529im -0.008664125106753406 + 0.025460928799853007im … -0.02294312469595051 + 0.09362231250886516im 0.012742803162901158 + 0.06776547269837692im; … ; -0.11859231572207005 + 0.04897000747971074im 0.007435952352796073 + 0.07906990300947829im … -0.010659141395052594 + 0.10219255594353424im -0.06231917516748747 - 0.017269525658349633im; -0.036979822672383415 + 0.12345734768536812im 0.03993542326723999 - 0.016812385366157544im … -0.03574467331802823 + 0.02262016053253482im -0.17031637370008706 + 0.0659007681996687im;;; … ;;; -0.13227497813162392 + 0.11530430649220146im -0.01638552027183504 + 0.024351490354328716im … -0.1144139701505345 - 0.041474834329002834im -0.201846547258997 + 0.010158669057703351im; -0.031218876878233312 + 0.053363277652443766im -0.06533896826644228 - 0.05224334271695032im … -0.09433513800696527 + 0.00771145933094141im -0.1201287673292297 + 0.08184069760824557im; … ; -0.03605230585850946 - 0.06387506767935419im -0.025934540510255337 - 0.008232864001745947im … 0.014295414781683304 - 0.07690870031920054im 0.0076571978682756295 - 0.05345826814611199im; -0.156982916773633 + 0.007825204228362817im -0.0417794750474191 + 0.04229317693232914im … -0.06161898311765372 - 0.07676045632693554im -0.10745691933326389 - 0.07856092266081639im;;; -0.0032809479081625697 + 0.051518971190496005im -0.07280312487773966 - 0.049313462483117215im … -0.056879476912954294 + 0.01453298800398715im -0.08282564050255994 + 0.07090435509203456im; -0.09177260594898166 - 0.05253999676107534im -0.20866475809242352 - 0.0023714733257806826im … -0.023664683621221348 + 0.022445710209482515im -0.025622048938935767 + 0.01884442666337323im; … ; -0.016607769996663357 + 0.0053859518553512065im 0.04024245922008025 + 0.012878749907754908im … -0.02418056434266712 - 0.017093547853530934im 0.026766654040243754 - 0.027799393113483173im; -0.02738362081434862 + 0.07481845002873797im 0.02454913079395367 - 0.009604557388882714im … -0.02359020296948673 + 0.013337921481033289im -0.07256987047463417 + 0.005568246930321992im;;; -0.041784558358699445 - 0.03425177734031892im -0.11134137308488899 + 0.023677929061957127im … -0.004173146355587128 - 0.008099861045488672im -0.003761953573410297 + 0.010402550864680133im; -0.13797079727274184 - 0.0019743777549470903im -0.14143370946103198 + 0.12404561892067703im … 0.019836884086733404 - 0.021159635852679434im -0.03565804579734253 - 0.014996778119382968im; … ; 0.07081298578394458 + 0.007298526019382138im 0.07671213681034096 - 0.03223471897660638im … 0.06865993469867446 + 0.06510207338964254im 0.054038987768124755 - 0.021664226570239746im; 0.05436694227658772 + 0.010983555302473188im -0.012101167832529517 - 0.03579917072356374im … 0.05303536071164963 - 0.008495700552577902im 0.008337250267243457 - 0.014972151373127279im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.02860310607492581 + 0.0040169220264130836im -0.009588108937382508 + 0.044113740457586745im … -0.02642182223420309 + 0.031246911376238272im -0.01148574596930287 + 0.023115927276857004im; -0.045160505468573156 + 0.027679546963370327im -0.02691335069581362 + 0.07510263164954195im … -0.00020299796862634917 - 0.006566013693059094im -0.02078106470345503 + 0.009210662068496654im; … ; 0.06987861264617146 - 0.03800097870654607im 0.011640331736196012 - 0.05724945534630868im … -0.002335598982431703 - 0.01796506976130801im -0.0028364310973141614 + 0.003414733032925172im; -0.0025309903175525037 - 0.03554111490371856im -0.016906965572779008 + 0.026677578093788425im … -0.058411742439739345 + 0.0011813978045269113im -0.011474447004905677 + 0.012459145789074127im;;; -0.011327177891001308 + 0.04223543794639903im 0.0033517383425310937 - 0.011550882636966414im … -0.006102758368718809 + 0.03570287651411373im -0.0523948674137641 + 0.03311461741807416im; -0.022895531879916685 + 0.023334225483791313im 0.012762296694206615 + 0.028516508382271405im … 0.0013086750573504651 + 0.0189294582100273im -0.007134065735702987 + 0.03458816262068064im; … ; -0.04377929499871559 - 0.053306698644247794im -0.04999145885017402 + 0.02689931048640972im … -0.10443211159304033 + 0.0929157176850494im 0.0018535310025672852 + 0.031140883893538834im; -0.06334483513808006 + 0.03933802728098153im 0.04256490723487376 + 0.05389927454467576im … -0.03491056245284385 + 0.10108733799434233im -0.06299827428052455 - 0.0001793869021927347im;;; -0.007158324595243823 + 0.0158575775353002im -0.07010410249565296 - 0.015763553522946172im … -0.10463544395950493 + 0.04493995689325911im -0.07645100229499185 + 0.14312629820916978im; -0.04710229194684458 + 0.00945755898961529im -0.008664125106753406 + 0.025460928799853007im … -0.02294312469595051 + 0.09362231250886516im 0.012742803162901158 + 0.06776547269837692im; … ; -0.11859231572207005 + 0.04897000747971074im 0.007435952352796073 + 0.07906990300947829im … -0.010659141395052594 + 0.10219255594353424im -0.06231917516748747 - 0.017269525658349633im; -0.036979822672383415 + 0.12345734768536812im 0.03993542326723999 - 0.016812385366157544im … -0.03574467331802823 + 0.02262016053253482im -0.17031637370008706 + 0.0659007681996687im;;; … ;;; -0.13227497813162392 + 0.11530430649220146im -0.01638552027183504 + 0.024351490354328716im … -0.1144139701505345 - 0.041474834329002834im -0.201846547258997 + 0.010158669057703351im; -0.031218876878233312 + 0.053363277652443766im -0.06533896826644228 - 0.05224334271695032im … -0.09433513800696527 + 0.00771145933094141im -0.1201287673292297 + 0.08184069760824557im; … ; -0.03605230585850946 - 0.06387506767935419im -0.025934540510255337 - 0.008232864001745947im … 0.014295414781683304 - 0.07690870031920054im 0.0076571978682756295 - 0.05345826814611199im; -0.156982916773633 + 0.007825204228362817im -0.0417794750474191 + 0.04229317693232914im … -0.06161898311765372 - 0.07676045632693554im -0.10745691933326389 - 0.07856092266081639im;;; -0.0032809479081625697 + 0.051518971190496005im -0.07280312487773966 - 0.049313462483117215im … -0.056879476912954294 + 0.01453298800398715im -0.08282564050255994 + 0.07090435509203456im; -0.09177260594898166 - 0.05253999676107534im -0.20866475809242352 - 0.0023714733257806826im … -0.023664683621221348 + 0.022445710209482515im -0.025622048938935767 + 0.01884442666337323im; … ; -0.016607769996663357 + 0.0053859518553512065im 0.04024245922008025 + 0.012878749907754908im … -0.02418056434266712 - 0.017093547853530934im 0.026766654040243754 - 0.027799393113483173im; -0.02738362081434862 + 0.07481845002873797im 0.02454913079395367 - 0.009604557388882714im … -0.02359020296948673 + 0.013337921481033289im -0.07256987047463417 + 0.005568246930321992im;;; -0.041784558358699445 - 0.03425177734031892im -0.11134137308488899 + 0.023677929061957127im … -0.004173146355587128 - 0.008099861045488672im -0.003761953573410297 + 0.010402550864680133im; -0.13797079727274184 - 0.0019743777549470903im -0.14143370946103198 + 0.12404561892067703im … 0.019836884086733404 - 0.021159635852679434im -0.03565804579734253 - 0.014996778119382968im; … ; 0.07081298578394458 + 0.007298526019382138im 0.07671213681034096 - 0.03223471897660638im … 0.06865993469867446 + 0.06510207338964254im 0.054038987768124755 - 0.021664226570239746im; 0.05436694227658772 + 0.010983555302473188im -0.012101167832529517 - 0.03579917072356374im … 0.05303536071164963 - 0.008495700552577902im 0.008337250267243457 - 0.014972151373127279im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.02860310607492581 + 0.0040169220264130836im -0.009588108937382508 + 0.044113740457586745im … -0.02642182223420309 + 0.031246911376238272im -0.01148574596930287 + 0.023115927276857004im; -0.045160505468573156 + 0.027679546963370327im -0.02691335069581362 + 0.07510263164954195im … -0.00020299796862634917 - 0.006566013693059094im -0.02078106470345503 + 0.009210662068496654im; … ; 0.06987861264617146 - 0.03800097870654607im 0.011640331736196012 - 0.05724945534630868im … -0.002335598982431703 - 0.01796506976130801im -0.0028364310973141614 + 0.003414733032925172im; -0.0025309903175525037 - 0.03554111490371856im -0.016906965572779008 + 0.026677578093788425im … -0.058411742439739345 + 0.0011813978045269113im -0.011474447004905677 + 0.012459145789074127im;;; -0.011327177891001308 + 0.04223543794639903im 0.0033517383425310937 - 0.011550882636966414im … -0.006102758368718809 + 0.03570287651411373im -0.0523948674137641 + 0.03311461741807416im; -0.022895531879916685 + 0.023334225483791313im 0.012762296694206615 + 0.028516508382271405im … 0.0013086750573504651 + 0.0189294582100273im -0.007134065735702987 + 0.03458816262068064im; … ; -0.04377929499871559 - 0.053306698644247794im -0.04999145885017402 + 0.02689931048640972im … -0.10443211159304033 + 0.0929157176850494im 0.0018535310025672852 + 0.031140883893538834im; -0.06334483513808006 + 0.03933802728098153im 0.04256490723487376 + 0.05389927454467576im … -0.03491056245284385 + 0.10108733799434233im -0.06299827428052455 - 0.0001793869021927347im;;; -0.007158324595243823 + 0.0158575775353002im -0.07010410249565296 - 0.015763553522946172im … -0.10463544395950493 + 0.04493995689325911im -0.07645100229499185 + 0.14312629820916978im; -0.04710229194684458 + 0.00945755898961529im -0.008664125106753406 + 0.025460928799853007im … -0.02294312469595051 + 0.09362231250886516im 0.012742803162901158 + 0.06776547269837692im; … ; -0.11859231572207005 + 0.04897000747971074im 0.007435952352796073 + 0.07906990300947829im … -0.010659141395052594 + 0.10219255594353424im -0.06231917516748747 - 0.017269525658349633im; -0.036979822672383415 + 0.12345734768536812im 0.03993542326723999 - 0.016812385366157544im … -0.03574467331802823 + 0.02262016053253482im -0.17031637370008706 + 0.0659007681996687im;;; … ;;; -0.13227497813162392 + 0.11530430649220146im -0.01638552027183504 + 0.024351490354328716im … -0.1144139701505345 - 0.041474834329002834im -0.201846547258997 + 0.010158669057703351im; -0.031218876878233312 + 0.053363277652443766im -0.06533896826644228 - 0.05224334271695032im … -0.09433513800696527 + 0.00771145933094141im -0.1201287673292297 + 0.08184069760824557im; … ; -0.03605230585850946 - 0.06387506767935419im -0.025934540510255337 - 0.008232864001745947im … 0.014295414781683304 - 0.07690870031920054im 0.0076571978682756295 - 0.05345826814611199im; -0.156982916773633 + 0.007825204228362817im -0.0417794750474191 + 0.04229317693232914im … -0.06161898311765372 - 0.07676045632693554im -0.10745691933326389 - 0.07856092266081639im;;; -0.0032809479081625697 + 0.051518971190496005im -0.07280312487773966 - 0.049313462483117215im … -0.056879476912954294 + 0.01453298800398715im -0.08282564050255994 + 0.07090435509203456im; -0.09177260594898166 - 0.05253999676107534im -0.20866475809242352 - 0.0023714733257806826im … -0.023664683621221348 + 0.022445710209482515im -0.025622048938935767 + 0.01884442666337323im; … ; -0.016607769996663357 + 0.0053859518553512065im 0.04024245922008025 + 0.012878749907754908im … -0.02418056434266712 - 0.017093547853530934im 0.026766654040243754 - 0.027799393113483173im; -0.02738362081434862 + 0.07481845002873797im 0.02454913079395367 - 0.009604557388882714im … -0.02359020296948673 + 0.013337921481033289im -0.07256987047463417 + 0.005568246930321992im;;; -0.041784558358699445 - 0.03425177734031892im -0.11134137308488899 + 0.023677929061957127im … -0.004173146355587128 - 0.008099861045488672im -0.003761953573410297 + 0.010402550864680133im; -0.13797079727274184 - 0.0019743777549470903im -0.14143370946103198 + 0.12404561892067703im … 0.019836884086733404 - 0.021159635852679434im -0.03565804579734253 - 0.014996778119382968im; … ; 0.07081298578394458 + 0.007298526019382138im 0.07671213681034096 - 0.03223471897660638im … 0.06865993469867446 + 0.06510207338964254im 0.054038987768124755 - 0.021664226570239746im; 0.05436694227658772 + 0.010983555302473188im -0.012101167832529517 - 0.03579917072356374im … 0.05303536071164963 - 0.008495700552577902im 0.008337250267243457 - 0.014972151373127279im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668723722 -11.100308396742191 … -8.289845772412315 -11.100308396742252; -11.10030839674219 -9.13005782594763 … -9.130057795896336 -11.100308356759214; … ; -8.289845772412315 -9.130057795896336 … -4.149589921643254 -6.287956198199222; -11.10030839674225 -11.100308356759216 … -6.287956198199223 -9.111848223577303;;; -11.100308396742193 -9.130057825947627 … -9.130057795896338 -11.100308356759216; -9.13005782594763 -6.903159481981987 … -9.13005782729731 -10.053883826552003; … ; -9.130057795896336 -9.13005782729731 … -5.294353669214322 -7.5473992065215185; -11.100308356759214 -10.053883826552003 … -7.547399206521519 -10.053883826552108;;; -8.289845772412615 -6.307621931516606 … -8.289845781011568 -9.111848193525972; -6.307621931516608 -4.516655665815624 … -7.54739923761135 -7.54739920652175; … ; -8.289845781011568 -7.54739923761135 … -5.768969083581139 -7.547399237611422; -9.111848193525972 -7.547399206521751 … -7.5473992376114225 -9.11184822492721;;; … ;;; -5.301031718249707 -6.3076219557888145 … -2.5497035732760134 -3.849582179387788; -6.3076219557888145 -6.903159495208816 … -3.3290606985462414 -4.878419358630577; … ; -2.549703573276013 -3.329060698546242 … -1.2567984709025075 -1.8141947460410799; -3.8495821793877885 -4.878419358630579 … -1.8141947460410799 -2.714767335322625;;; -8.289845772412317 -9.130057795896336 … -4.149589921643256 -6.287956198199221; -9.130057795896338 -9.130057827297309 … -5.294353669214321 -7.547399206521518; … ; -4.149589921643256 -5.294353669214322 … -1.9094492399153384 -2.894612367852284; -6.287956198199222 -7.547399206521517 … -2.8946123678522837 -4.485542759372009;;; -11.100308396742252 -11.100308356759216 … -6.287956198199223 -9.1118482235773; -11.100308356759212 -10.053883826552001 … -7.547399206521519 -10.053883826552108; … ; -6.287956198199221 -7.54739920652152 … -2.8946123678522837 -4.4855427593720085; -9.111848223577303 -10.053883826552108 … -4.485542759372009 -6.871104500135175]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.02860310607492581 + 0.0040169220264130836im -0.009588108937382508 + 0.044113740457586745im … -0.02642182223420309 + 0.031246911376238272im -0.01148574596930287 + 0.023115927276857004im; -0.045160505468573156 + 0.027679546963370327im -0.02691335069581362 + 0.07510263164954195im … -0.00020299796862634917 - 0.006566013693059094im -0.02078106470345503 + 0.009210662068496654im; … ; 0.06987861264617146 - 0.03800097870654607im 0.011640331736196012 - 0.05724945534630868im … -0.002335598982431703 - 0.01796506976130801im -0.0028364310973141614 + 0.003414733032925172im; -0.0025309903175525037 - 0.03554111490371856im -0.016906965572779008 + 0.026677578093788425im … -0.058411742439739345 + 0.0011813978045269113im -0.011474447004905677 + 0.012459145789074127im;;; -0.011327177891001308 + 0.04223543794639903im 0.0033517383425310937 - 0.011550882636966414im … -0.006102758368718809 + 0.03570287651411373im -0.0523948674137641 + 0.03311461741807416im; -0.022895531879916685 + 0.023334225483791313im 0.012762296694206615 + 0.028516508382271405im … 0.0013086750573504651 + 0.0189294582100273im -0.007134065735702987 + 0.03458816262068064im; … ; -0.04377929499871559 - 0.053306698644247794im -0.04999145885017402 + 0.02689931048640972im … -0.10443211159304033 + 0.0929157176850494im 0.0018535310025672852 + 0.031140883893538834im; -0.06334483513808006 + 0.03933802728098153im 0.04256490723487376 + 0.05389927454467576im … -0.03491056245284385 + 0.10108733799434233im -0.06299827428052455 - 0.0001793869021927347im;;; -0.007158324595243823 + 0.0158575775353002im -0.07010410249565296 - 0.015763553522946172im … -0.10463544395950493 + 0.04493995689325911im -0.07645100229499185 + 0.14312629820916978im; -0.04710229194684458 + 0.00945755898961529im -0.008664125106753406 + 0.025460928799853007im … -0.02294312469595051 + 0.09362231250886516im 0.012742803162901158 + 0.06776547269837692im; … ; -0.11859231572207005 + 0.04897000747971074im 0.007435952352796073 + 0.07906990300947829im … -0.010659141395052594 + 0.10219255594353424im -0.06231917516748747 - 0.017269525658349633im; -0.036979822672383415 + 0.12345734768536812im 0.03993542326723999 - 0.016812385366157544im … -0.03574467331802823 + 0.02262016053253482im -0.17031637370008706 + 0.0659007681996687im;;; … ;;; -0.13227497813162392 + 0.11530430649220146im -0.01638552027183504 + 0.024351490354328716im … -0.1144139701505345 - 0.041474834329002834im -0.201846547258997 + 0.010158669057703351im; -0.031218876878233312 + 0.053363277652443766im -0.06533896826644228 - 0.05224334271695032im … -0.09433513800696527 + 0.00771145933094141im -0.1201287673292297 + 0.08184069760824557im; … ; -0.03605230585850946 - 0.06387506767935419im -0.025934540510255337 - 0.008232864001745947im … 0.014295414781683304 - 0.07690870031920054im 0.0076571978682756295 - 0.05345826814611199im; -0.156982916773633 + 0.007825204228362817im -0.0417794750474191 + 0.04229317693232914im … -0.06161898311765372 - 0.07676045632693554im -0.10745691933326389 - 0.07856092266081639im;;; -0.0032809479081625697 + 0.051518971190496005im -0.07280312487773966 - 0.049313462483117215im … -0.056879476912954294 + 0.01453298800398715im -0.08282564050255994 + 0.07090435509203456im; -0.09177260594898166 - 0.05253999676107534im -0.20866475809242352 - 0.0023714733257806826im … -0.023664683621221348 + 0.022445710209482515im -0.025622048938935767 + 0.01884442666337323im; … ; -0.016607769996663357 + 0.0053859518553512065im 0.04024245922008025 + 0.012878749907754908im … -0.02418056434266712 - 0.017093547853530934im 0.026766654040243754 - 0.027799393113483173im; -0.02738362081434862 + 0.07481845002873797im 0.02454913079395367 - 0.009604557388882714im … -0.02359020296948673 + 0.013337921481033289im -0.07256987047463417 + 0.005568246930321992im;;; -0.041784558358699445 - 0.03425177734031892im -0.11134137308488899 + 0.023677929061957127im … -0.004173146355587128 - 0.008099861045488672im -0.003761953573410297 + 0.010402550864680133im; -0.13797079727274184 - 0.0019743777549470903im -0.14143370946103198 + 0.12404561892067703im … 0.019836884086733404 - 0.021159635852679434im -0.03565804579734253 - 0.014996778119382968im; … ; 0.07081298578394458 + 0.007298526019382138im 0.07671213681034096 - 0.03223471897660638im … 0.06865993469867446 + 0.06510207338964254im 0.054038987768124755 - 0.021664226570239746im; 0.05436694227658772 + 0.010983555302473188im -0.012101167832529517 - 0.03579917072356374im … 0.05303536071164963 - 0.008495700552577902im 0.008337250267243457 - 0.014972151373127279im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784542785487e-5 0.0011262712728402579 … 0.006697037550097043 0.0011262712728402698; 0.0011262712728402444 0.005274334457381555 … 0.005274334457381594 0.0011262712728402511; … ; 0.006697037550097045 0.0052743344573816 … 0.023244754191094792 0.012258986825271755; 0.001126271272840273 0.0011262712728402579 … 0.012258986825271753 0.0037700086299108995;;; 0.0011262712728402566 0.005274334457381566 … 0.005274334457381589 0.0011262712728402665; 0.005274334457381556 0.014620065304732002 … 0.0052743344573815834 0.0025880808748602988; … ; 0.005274334457381593 0.005274334457381588 … 0.018107686646173723 0.008922003044766322; 0.001126271272840267 0.0025880808748603035 … 0.00892200304476632 0.0025880808748603244;;; 0.006697037550097012 0.016412109101616317 … 0.006697037550097043 0.0037700086299108843; 0.016412109101616303 0.03127783931593627 … 0.008922003044766294 0.008922003044766275; … ; 0.006697037550097038 0.008922003044766298 … 0.016476756359476905 0.008922003044766322; 0.003770008629910885 0.00892200304476628 … 0.008922003044766319 0.0037700086299108948;;; … ;;; 0.019853839853425852 0.01641210910161633 … 0.037156673635712664 0.027190800686617212; 0.01641210910161632 0.014620065304732014 … 0.032301272126479666 0.022322100931741022; … ; 0.037156673635712664 0.03230127212647967 … 0.04629698070148643 0.04263658273148536; 0.02719080068661722 0.02232210093174103 … 0.04263658273148536 0.034772229142043955;;; 0.00669703755009702 0.005274334457381572 … 0.023244754191094764 0.012258986825271727; 0.00527433445738156 0.0052743344573815566 … 0.018107686646173685 0.008922003044766286; … ; 0.023244754191094768 0.018107686646173696 … 0.04037111033562756 0.031491603811438895; 0.012258986825271732 0.008922003044766291 … 0.031491603811438895 0.020047163432780485;;; 0.0011262712728402592 0.0011262712728402552 … 0.012258986825271734 0.0037700086299108913; 0.0011262712728402453 0.002588080874860281 … 0.008922003044766301 0.0025880808748603005; … ; 0.01225898682527174 0.008922003044766307 … 0.03149160381143891 0.020047163432780495; 0.003770008629910894 0.002588080874860306 … 0.020047163432780492 0.008952603496797436;;;;], eigenvalues = [[-0.17836835653967778, 0.26249194499095796, 0.26249194499095846, 0.26249194499095857, 0.3546921481674954, 0.3546921481674959, 0.35469214816857364], [-0.12755037617955972, 0.06475320594648663, 0.22545166517370252, 0.2254516651737028, 0.32197764961114705, 0.3892227690846679, 0.38922276908466835], [-0.108187292165454, 0.07755003473392647, 0.17278328011432384, 0.17278328011432417, 0.28435185361977755, 0.3305476484330935, 0.5267232426385011], [-0.057773253744771186, 0.012724782205110056, 0.09766073750106212, 0.18417825332932206, 0.3152284179598632, 0.47203121831970946, 0.4979135176180172]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993053681, n_iter = 10, ψ = Matrix{ComplexF64}[[0.8869053358165425 - 0.3392677593390795im -2.0589000829946905e-14 + 1.552718588668342e-14im … 4.957080208510294e-12 - 3.623478987554389e-12im 1.9529418528651513e-7 - 1.296414824795716e-7im; 0.04051684618067128 - 0.09071814795276978im 0.0086694539652378 + 0.0076647267270530985im … -0.3868704915073321 - 0.0018376365850909285im -0.3401414641165214 + 0.15916008471856402im; … ; -0.01098199867780996 + 0.004200942235925007im 0.008844923727461823 - 0.0060315891838879105im … 0.06328414938617052 + 0.04463257951035005im 0.01040926129358476 + 0.01875309370218247im; 0.04051684618067716 - 0.09071814795276811im 0.009462596710748093 - 0.10354443168071402im … 0.25325952389016615 - 0.1124732148980103im -0.16716000849450383 + 0.20865361185303555im], [-0.8332787734266921 + 0.39284231225467287im 0.13050222159848873 + 0.15553360355429013im … 1.2039122750125496e-10 + 4.118853389284949e-11im -6.868619002674278e-11 + 4.4911723655913755e-11im; -0.021146216874447666 + 0.05886847406581158im -0.008975039893282128 - 0.0007854178808342749im … 2.170669108144974e-11 - 2.8710368806825603e-10im -1.1578334425048309e-10 + 2.4777156969028334e-10im; … ; 0.004470389039891564 - 0.002107527544314956im -0.05433893565948596 - 0.06476158315845668im … 0.04130176875127724 - 0.05181166526587944im -0.031282398896669665 + 0.07576266095446585im; -0.03952374649539045 + 0.11002926241428299im 0.09973888023603147 + 0.008728284317870212im … -0.03286167094341112 - 0.2911411266306249im 0.13907803656747147 + 0.3347016399959852im], [-0.41124114073830403 + 0.8291516064819879im -6.3165882693078115e-15 + 1.6545827766517569e-16im … 1.9055684152023363e-13 - 6.688659983322497e-13im -8.541877293288614e-10 + 1.1582220904810318e-9im; 0.021881674002766176 + 0.06494661405948922im 0.034271125044410766 - 0.03936973239831132im … -0.004891600724038672 - 0.025495763382274043im -0.0006930700779527747 - 0.007604589432004215im; … ; 0.004707610319534904 - 0.00949156655909656im 1.4585543627145277e-14 - 3.181662988177666e-16im … 5.060703563745968e-12 + 2.9894689513681272e-12im -0.017500516496982463 - 0.05060503778273963im; 0.05116233408826962 + 0.15185402935773368im -0.19253575249089772 + 0.22117981370183457im … -0.07011110408900598 - 0.36542968717199964im -0.13901030169718168 - 0.07001777331619712im], [-0.3556230289508102 + 0.7158572693720983im 2.66265285208498e-15 + 3.4665716985663198e-15im … -0.12151457718167605 + 0.13501095908880612im 3.590976133293169e-6 + 7.782762635863612e-7im; 0.12487493312793099 + 0.3714278532892614im -0.6043628644759366 - 0.14178414831295214im … -0.009562062368914107 - 0.18174110936973553im 9.567326550324497e-7 + 7.120690687848173e-8im; … ; 0.005895504364984185 - 0.011867453209507618im 0.00013377170982961038 + 0.0002157759494931187im … 0.008728818561973566 - 0.009698559584794082im -0.03833211428183586 + 0.025604779572941896im; 0.021380311604859186 + 0.06359357353108752im 0.005172874715572814 + 0.00121356171759213im … -0.00753885633002578 - 0.1431823266633749im -0.09200684665878464 + 0.4621586561699092im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653967778, 0.26249194499095796, 0.26249194499095846, 0.26249194499095857, 0.3546921481674954, 0.3546921481674959, 0.35469214816857364], [-0.12755037617955972, 0.06475320594648663, 0.22545166517370252, 0.2254516651737028, 0.32197764961114705, 0.3892227690846679, 0.38922276908466835], [-0.108187292165454, 0.07755003473392647, 0.17278328011432384, 0.17278328011432417, 0.28435185361977755, 0.3305476484330935, 0.5267232426385011], [-0.057773253744771186, 0.012724782205110056, 0.09766073750106212, 0.18417825332932206, 0.3152284179598632, 0.47203121831970946, 0.4979135176180172]], X = [[0.8869053358165425 - 0.3392677593390795im -2.0589000829946905e-14 + 1.552718588668342e-14im … 4.957080208510294e-12 - 3.623478987554389e-12im 1.9529418528651513e-7 - 1.296414824795716e-7im; 0.04051684618067128 - 0.09071814795276978im 0.0086694539652378 + 0.0076647267270530985im … -0.3868704915073321 - 0.0018376365850909285im -0.3401414641165214 + 0.15916008471856402im; … ; -0.01098199867780996 + 0.004200942235925007im 0.008844923727461823 - 0.0060315891838879105im … 0.06328414938617052 + 0.04463257951035005im 0.01040926129358476 + 0.01875309370218247im; 0.04051684618067716 - 0.09071814795276811im 0.009462596710748093 - 0.10354443168071402im … 0.25325952389016615 - 0.1124732148980103im -0.16716000849450383 + 0.20865361185303555im], [-0.8332787734266921 + 0.39284231225467287im 0.13050222159848873 + 0.15553360355429013im … 1.2039122750125496e-10 + 4.118853389284949e-11im -6.868619002674278e-11 + 4.4911723655913755e-11im; -0.021146216874447666 + 0.05886847406581158im -0.008975039893282128 - 0.0007854178808342749im … 2.170669108144974e-11 - 2.8710368806825603e-10im -1.1578334425048309e-10 + 2.4777156969028334e-10im; … ; 0.004470389039891564 - 0.002107527544314956im -0.05433893565948596 - 0.06476158315845668im … 0.04130176875127724 - 0.05181166526587944im -0.031282398896669665 + 0.07576266095446585im; -0.03952374649539045 + 0.11002926241428299im 0.09973888023603147 + 0.008728284317870212im … -0.03286167094341112 - 0.2911411266306249im 0.13907803656747147 + 0.3347016399959852im], [-0.41124114073830403 + 0.8291516064819879im -6.3165882693078115e-15 + 1.6545827766517569e-16im … 1.9055684152023363e-13 - 6.688659983322497e-13im -8.541877293288614e-10 + 1.1582220904810318e-9im; 0.021881674002766176 + 0.06494661405948922im 0.034271125044410766 - 0.03936973239831132im … -0.004891600724038672 - 0.025495763382274043im -0.0006930700779527747 - 0.007604589432004215im; … ; 0.004707610319534904 - 0.00949156655909656im 1.4585543627145277e-14 - 3.181662988177666e-16im … 5.060703563745968e-12 + 2.9894689513681272e-12im -0.017500516496982463 - 0.05060503778273963im; 0.05116233408826962 + 0.15185402935773368im -0.19253575249089772 + 0.22117981370183457im … -0.07011110408900598 - 0.36542968717199964im -0.13901030169718168 - 0.07001777331619712im], [-0.3556230289508102 + 0.7158572693720983im 2.66265285208498e-15 + 3.4665716985663198e-15im … -0.12151457718167605 + 0.13501095908880612im 3.590976133293169e-6 + 7.782762635863612e-7im; 0.12487493312793099 + 0.3714278532892614im -0.6043628644759366 - 0.14178414831295214im … -0.009562062368914107 - 0.18174110936973553im 9.567326550324497e-7 + 7.120690687848173e-8im; … ; 0.005895504364984185 - 0.011867453209507618im 0.00013377170982961038 + 0.0002157759494931187im … 0.008728818561973566 - 0.009698559584794082im -0.03833211428183586 + 0.025604779572941896im; 0.021380311604859186 + 0.06359357353108752im 0.005172874715572814 + 0.00121356171759213im … -0.00753885633002578 - 0.1431823266633749im -0.09200684665878464 + 0.4621586561699092im]], residual_norms = [[0.0, 1.5052860809492493e-12, 2.9917271026609307e-12, 1.0890741369147753e-12, 1.4222822016506654e-10, 4.724208065987766e-11, 1.7607555564407687e-6], [0.0, 0.0, 3.5184480938191105e-12, 3.976736853188988e-12, 5.494832230602218e-10, 1.1689615051508122e-8, 1.2295280807084602e-8], [1.2698955811842369e-12, 7.963468331772073e-13, 9.17711553072729e-13, 4.241596815914706e-13, 8.349267447181042e-12, 2.3589879738123263e-10, 1.6560480747570272e-7], [9.585085721447617e-13, 7.530385228618039e-13, 4.975541642416578e-13, 2.6951649831394767e-12, 2.638137807352221e-10, 1.1302438472019694e-5, 5.0469147808869e-6]], n_iter = [4, 3, 3, 3], converged = 1, n_matvec = 116)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2107036779418682, 0.027620839650886096, 0.0023084149279556554, 0.0002587484260975943, 9.563901793323922e-6, 9.038910603702047e-7, 3.605462154125445e-8, 2.3483780874842928e-9, 1.4728911998268936e-10, 2.2663783860393645e-11], history_Etot = [-7.905257372633419, -7.910544399598436, -7.91059344734721, -7.910594393405276, -7.910594396449511, -7.910594396488449, -7.910594396488509, -7.910594396488507, -7.910594396488508, -7.910594396488506], occupation_threshold = 1.0e-6, seed = 0x90fdb28c9e6d34a9, runtime_ns = 0x000000008098a0bc)