Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#787"{DFTK.var"#anderson#786#788"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01894692065866921 - 0.029012158959588828im -0.016550981043985415 + 0.029347738933412137im … -0.038662140354835464 - 0.03758174074492414im -0.010236712475880934 - 0.011683969741431766im; -0.005185135471146254 + 0.0017794587932131178im 0.010902771742073965 - 0.0015643173867113036im … -0.019272785821724946 + 0.0008323404241268734im -0.009050276665355367 - 0.027093738792051233im; … ; 0.04857922624174344 + 0.015914240810118475im 0.02537133138179622 - 0.02425931654591667im … -0.006936977776491525 - 0.033207696400713686im -0.026834499088912826 + 0.00860305637726313im; 0.03268917048968172 - 0.06299900482863281im -0.035074738560829 - 0.027138466147999016im … -0.006067781407306535 - 0.04533550796181249im 0.01735248690625603 - 0.015709104880684124im;;; 0.11205429061408274 + 0.006135122813041478im 0.06348206660083755 - 0.009725744055420156im … -0.0340906170367653 + 0.05582558856959528im 0.09140340200620123 + 0.08861016934426483im; 0.010132086148385313 - 0.03510976938216251im 0.02274740473012033 - 0.049452556116219466im … 0.04868112703505272 + 0.05405635279961753im 0.09949519402808613 - 0.02010248881992734im; … ; 0.0272339971462648 + 0.02247311759057305im 0.024357819377843145 + 0.030342656842545467im … 0.07296068570505983 - 0.00896739073938218im 0.036173382420775474 - 0.008519645344635896im; 0.04030886666353381 + 0.040756812979013256im 0.07153461929175654 + 0.041044367646624im … 0.016266422308282985 - 0.058405629707021164im -0.0018511127396058785 + 0.05014303863638843im;;; 0.06713879168635731 - 0.07629643071233225im 0.01701226796889157 - 0.005715361806186741im … 0.1056336336780447 + 0.11180366125691168im 0.23035775721188095 - 0.01176745826747554im; -0.02471473548786517 + 0.02574239549367821im 0.031013871572114753 + 0.05271994774940093im … 0.13457687216872027 - 0.003821847695500284im 0.054535982148382595 - 0.09339247096198122im; … ; 0.07165680232760202 + 0.07299938100218328im 0.0780269351544932 + 0.02076359571298894im … 0.024196913719143454 - 0.03267903089102155im 0.005969938383909612 + 0.04391606129234932im; 0.1674558857430865 + 0.01350328985875251im 0.08199262501620985 - 0.024582500100986966im … -0.010565072149469121 + 0.04033162392604663im 0.11294859672560104 + 0.1131930595153371im;;; … ;;; 0.03166395717257656 - 0.03141657239797271im -0.04827508722097215 + 0.014946991013860107im … -0.014784042620822946 + 0.012206455155368163im 0.041664782813955276 + 0.027687457044299688im; -0.0097077739068498 - 0.02685562690930795im -0.0016321329842193116 + 0.043529204008186016im … 0.03683830179903721 + 0.023228356482540957im 0.06928665662176167 - 0.031169906298296666im; … ; 0.0013955968497852411 + 0.027438905669330882im -0.00568831012517821 - 0.033578259715530134im … -0.15881928331777784 - 0.03407071894805909im -0.0627995306290268 + 0.03308420512815085im; 0.008479879649200592 - 0.007302915666734154im -0.05816604866542776 - 0.026020490705186507im … -0.05203023747881606 - 0.0005079669488717853im -0.017332582016444165 - 0.001998753295169379im;;; -0.018891516796793267 - 0.02259830286174399im -0.014067156835846549 + 0.05335652513239357im … -0.04049119668194644 - 0.05380191909353186im -0.005878164717291676 - 0.029747531600394696im; -0.013725663968014914 + 0.034475402300116156im 0.06018326354105864 + 0.03963349073283119im … 0.006434488896755575 - 0.016923106330067765im -0.008723777978975413 - 0.03732059316914194im; … ; -0.05685657927466626 - 0.07253326188068657im -0.09615951578664096 - 0.00800124999428im … -0.03157401756007608 + 0.007130513800398926im 0.010456506427674475 - 0.09728907079205301im; -0.06834349025906528 - 0.015771480578127647im -0.0746475261021663 + 0.05499327139233304im … -0.013877806569416803 - 0.08162452271107312im -0.06450057550878374 - 0.07610660487445019im;;; 0.010871000299600656 - 0.03248685688842627im -0.006252359958778403 + 0.00037526370042432946im … -0.10529272302623316 - 0.044945777714984286im -0.010432743182151566 - 0.02280365251271573im; 0.026062502270777183 + 0.001855168588959271im 0.03312107075186623 - 0.00713587915783085im … -0.04141022571555606 + 0.012408019239869367im -0.0015419812280899337 + 0.0026956554555862995im; … ; -0.0969374661432346 + 0.012723558674142823im -0.018315472175613707 + 0.04811704164401875im … 0.013150334095112824 - 0.11552233806221868im -0.096966679586069 - 0.12005472694828179im; 0.019143816258088184 + 0.0038650137484258426im 0.005063901298438783 + 0.003927943715217593im … -0.08845900204002032 - 0.12838455450121272im -0.12251701552260147 - 0.026923934822759166im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01894692065866921 - 0.029012158959588828im -0.016550981043985415 + 0.029347738933412137im … -0.038662140354835464 - 0.03758174074492414im -0.010236712475880934 - 0.011683969741431766im; -0.005185135471146254 + 0.0017794587932131178im 0.010902771742073965 - 0.0015643173867113036im … -0.019272785821724946 + 0.0008323404241268734im -0.009050276665355367 - 0.027093738792051233im; … ; 0.04857922624174344 + 0.015914240810118475im 0.02537133138179622 - 0.02425931654591667im … -0.006936977776491525 - 0.033207696400713686im -0.026834499088912826 + 0.00860305637726313im; 0.03268917048968172 - 0.06299900482863281im -0.035074738560829 - 0.027138466147999016im … -0.006067781407306535 - 0.04533550796181249im 0.01735248690625603 - 0.015709104880684124im;;; 0.11205429061408274 + 0.006135122813041478im 0.06348206660083755 - 0.009725744055420156im … -0.0340906170367653 + 0.05582558856959528im 0.09140340200620123 + 0.08861016934426483im; 0.010132086148385313 - 0.03510976938216251im 0.02274740473012033 - 0.049452556116219466im … 0.04868112703505272 + 0.05405635279961753im 0.09949519402808613 - 0.02010248881992734im; … ; 0.0272339971462648 + 0.02247311759057305im 0.024357819377843145 + 0.030342656842545467im … 0.07296068570505983 - 0.00896739073938218im 0.036173382420775474 - 0.008519645344635896im; 0.04030886666353381 + 0.040756812979013256im 0.07153461929175654 + 0.041044367646624im … 0.016266422308282985 - 0.058405629707021164im -0.0018511127396058785 + 0.05014303863638843im;;; 0.06713879168635731 - 0.07629643071233225im 0.01701226796889157 - 0.005715361806186741im … 0.1056336336780447 + 0.11180366125691168im 0.23035775721188095 - 0.01176745826747554im; -0.02471473548786517 + 0.02574239549367821im 0.031013871572114753 + 0.05271994774940093im … 0.13457687216872027 - 0.003821847695500284im 0.054535982148382595 - 0.09339247096198122im; … ; 0.07165680232760202 + 0.07299938100218328im 0.0780269351544932 + 0.02076359571298894im … 0.024196913719143454 - 0.03267903089102155im 0.005969938383909612 + 0.04391606129234932im; 0.1674558857430865 + 0.01350328985875251im 0.08199262501620985 - 0.024582500100986966im … -0.010565072149469121 + 0.04033162392604663im 0.11294859672560104 + 0.1131930595153371im;;; … ;;; 0.03166395717257656 - 0.03141657239797271im -0.04827508722097215 + 0.014946991013860107im … -0.014784042620822946 + 0.012206455155368163im 0.041664782813955276 + 0.027687457044299688im; -0.0097077739068498 - 0.02685562690930795im -0.0016321329842193116 + 0.043529204008186016im … 0.03683830179903721 + 0.023228356482540957im 0.06928665662176167 - 0.031169906298296666im; … ; 0.0013955968497852411 + 0.027438905669330882im -0.00568831012517821 - 0.033578259715530134im … -0.15881928331777784 - 0.03407071894805909im -0.0627995306290268 + 0.03308420512815085im; 0.008479879649200592 - 0.007302915666734154im -0.05816604866542776 - 0.026020490705186507im … -0.05203023747881606 - 0.0005079669488717853im -0.017332582016444165 - 0.001998753295169379im;;; -0.018891516796793267 - 0.02259830286174399im -0.014067156835846549 + 0.05335652513239357im … -0.04049119668194644 - 0.05380191909353186im -0.005878164717291676 - 0.029747531600394696im; -0.013725663968014914 + 0.034475402300116156im 0.06018326354105864 + 0.03963349073283119im … 0.006434488896755575 - 0.016923106330067765im -0.008723777978975413 - 0.03732059316914194im; … ; -0.05685657927466626 - 0.07253326188068657im -0.09615951578664096 - 0.00800124999428im … -0.03157401756007608 + 0.007130513800398926im 0.010456506427674475 - 0.09728907079205301im; -0.06834349025906528 - 0.015771480578127647im -0.0746475261021663 + 0.05499327139233304im … -0.013877806569416803 - 0.08162452271107312im -0.06450057550878374 - 0.07610660487445019im;;; 0.010871000299600656 - 0.03248685688842627im -0.006252359958778403 + 0.00037526370042432946im … -0.10529272302623316 - 0.044945777714984286im -0.010432743182151566 - 0.02280365251271573im; 0.026062502270777183 + 0.001855168588959271im 0.03312107075186623 - 0.00713587915783085im … -0.04141022571555606 + 0.012408019239869367im -0.0015419812280899337 + 0.0026956554555862995im; … ; -0.0969374661432346 + 0.012723558674142823im -0.018315472175613707 + 0.04811704164401875im … 0.013150334095112824 - 0.11552233806221868im -0.096966679586069 - 0.12005472694828179im; 0.019143816258088184 + 0.0038650137484258426im 0.005063901298438783 + 0.003927943715217593im … -0.08845900204002032 - 0.12838455450121272im -0.12251701552260147 - 0.026923934822759166im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01894692065866921 - 0.029012158959588828im -0.016550981043985415 + 0.029347738933412137im … -0.038662140354835464 - 0.03758174074492414im -0.010236712475880934 - 0.011683969741431766im; -0.005185135471146254 + 0.0017794587932131178im 0.010902771742073965 - 0.0015643173867113036im … -0.019272785821724946 + 0.0008323404241268734im -0.009050276665355367 - 0.027093738792051233im; … ; 0.04857922624174344 + 0.015914240810118475im 0.02537133138179622 - 0.02425931654591667im … -0.006936977776491525 - 0.033207696400713686im -0.026834499088912826 + 0.00860305637726313im; 0.03268917048968172 - 0.06299900482863281im -0.035074738560829 - 0.027138466147999016im … -0.006067781407306535 - 0.04533550796181249im 0.01735248690625603 - 0.015709104880684124im;;; 0.11205429061408274 + 0.006135122813041478im 0.06348206660083755 - 0.009725744055420156im … -0.0340906170367653 + 0.05582558856959528im 0.09140340200620123 + 0.08861016934426483im; 0.010132086148385313 - 0.03510976938216251im 0.02274740473012033 - 0.049452556116219466im … 0.04868112703505272 + 0.05405635279961753im 0.09949519402808613 - 0.02010248881992734im; … ; 0.0272339971462648 + 0.02247311759057305im 0.024357819377843145 + 0.030342656842545467im … 0.07296068570505983 - 0.00896739073938218im 0.036173382420775474 - 0.008519645344635896im; 0.04030886666353381 + 0.040756812979013256im 0.07153461929175654 + 0.041044367646624im … 0.016266422308282985 - 0.058405629707021164im -0.0018511127396058785 + 0.05014303863638843im;;; 0.06713879168635731 - 0.07629643071233225im 0.01701226796889157 - 0.005715361806186741im … 0.1056336336780447 + 0.11180366125691168im 0.23035775721188095 - 0.01176745826747554im; -0.02471473548786517 + 0.02574239549367821im 0.031013871572114753 + 0.05271994774940093im … 0.13457687216872027 - 0.003821847695500284im 0.054535982148382595 - 0.09339247096198122im; … ; 0.07165680232760202 + 0.07299938100218328im 0.0780269351544932 + 0.02076359571298894im … 0.024196913719143454 - 0.03267903089102155im 0.005969938383909612 + 0.04391606129234932im; 0.1674558857430865 + 0.01350328985875251im 0.08199262501620985 - 0.024582500100986966im … -0.010565072149469121 + 0.04033162392604663im 0.11294859672560104 + 0.1131930595153371im;;; … ;;; 0.03166395717257656 - 0.03141657239797271im -0.04827508722097215 + 0.014946991013860107im … -0.014784042620822946 + 0.012206455155368163im 0.041664782813955276 + 0.027687457044299688im; -0.0097077739068498 - 0.02685562690930795im -0.0016321329842193116 + 0.043529204008186016im … 0.03683830179903721 + 0.023228356482540957im 0.06928665662176167 - 0.031169906298296666im; … ; 0.0013955968497852411 + 0.027438905669330882im -0.00568831012517821 - 0.033578259715530134im … -0.15881928331777784 - 0.03407071894805909im -0.0627995306290268 + 0.03308420512815085im; 0.008479879649200592 - 0.007302915666734154im -0.05816604866542776 - 0.026020490705186507im … -0.05203023747881606 - 0.0005079669488717853im -0.017332582016444165 - 0.001998753295169379im;;; -0.018891516796793267 - 0.02259830286174399im -0.014067156835846549 + 0.05335652513239357im … -0.04049119668194644 - 0.05380191909353186im -0.005878164717291676 - 0.029747531600394696im; -0.013725663968014914 + 0.034475402300116156im 0.06018326354105864 + 0.03963349073283119im … 0.006434488896755575 - 0.016923106330067765im -0.008723777978975413 - 0.03732059316914194im; … ; -0.05685657927466626 - 0.07253326188068657im -0.09615951578664096 - 0.00800124999428im … -0.03157401756007608 + 0.007130513800398926im 0.010456506427674475 - 0.09728907079205301im; -0.06834349025906528 - 0.015771480578127647im -0.0746475261021663 + 0.05499327139233304im … -0.013877806569416803 - 0.08162452271107312im -0.06450057550878374 - 0.07610660487445019im;;; 0.010871000299600656 - 0.03248685688842627im -0.006252359958778403 + 0.00037526370042432946im … -0.10529272302623316 - 0.044945777714984286im -0.010432743182151566 - 0.02280365251271573im; 0.026062502270777183 + 0.001855168588959271im 0.03312107075186623 - 0.00713587915783085im … -0.04141022571555606 + 0.012408019239869367im -0.0015419812280899337 + 0.0026956554555862995im; … ; -0.0969374661432346 + 0.012723558674142823im -0.018315472175613707 + 0.04811704164401875im … 0.013150334095112824 - 0.11552233806221868im -0.096966679586069 - 0.12005472694828179im; 0.019143816258088184 + 0.0038650137484258426im 0.005063901298438783 + 0.003927943715217593im … -0.08845900204002032 - 0.12838455450121272im -0.12251701552260147 - 0.026923934822759166im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668720052 -11.100308396742466 … -8.289845772412614 -11.100308396742527; -11.100308396742466 -9.130057825947944 … -9.13005779589665 -11.10030835675949; … ; -8.289845772412614 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -11.100308396742525 -11.100308356759491 … -6.287956198199336 -9.11184822357777;;; -11.100308396742468 -9.130057825947942 … -9.130057795896654 -11.100308356759491; -9.130057825947944 -6.903159481982056 … -9.130057827297625 -10.053883826552436; … ; -9.13005779589665 -9.130057827297625 … -5.294353669214317 -7.547399206521742; -11.10030835675949 -10.053883826552436 … -7.547399206521743 -10.053883826552543;;; -8.289845772412912 -6.307621931516639 … -8.289845781011866 -9.11184819352644; -6.307621931516641 -4.516655665815472 … -7.547399237611574 -7.547399206521975; … ; -8.289845781011865 -7.5473992376115735 … -5.768969083581173 -7.547399237611645; -9.111848193526438 -7.547399206521974 … -7.547399237611646 -9.111848224927677;;; … ;;; -5.30103171824967 -6.307621955788846 … -2.5497035732758233 -3.849582179387648; -6.307621955788847 -6.903159495208884 … -3.3290606985460798 -4.8784193586305085; … ; -2.5497035732758224 -3.3290606985460798 … -1.2567984709023867 -1.814194746040902; -3.8495821793876464 -4.87841935863051 … -1.8141947460409016 -2.71476733532243;;; -8.289845772412615 -9.13005779589665 … -4.149589921643149 -6.2879561981993355; -9.130057795896652 -9.130057827297623 … -5.294353669214315 -7.5473992065217415; … ; -4.149589921643149 -5.294353669214316 … -1.9094492399151521 -2.894612367852097; -6.2879561981993355 -7.547399206521742 … -2.8946123678520967 -4.485542759371935;;; -11.100308396742527 -11.100308356759491 … -6.287956198199337 -9.111848223577768; -11.10030835675949 -10.053883826552436 … -7.547399206521744 -10.053883826552541; … ; -6.2879561981993355 -7.547399206521744 … -2.8946123678520967 -4.485542759371935; -9.11184822357777 -10.053883826552541 … -4.485542759371936 -6.871104500135398]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01894692065866921 - 0.029012158959588828im -0.016550981043985415 + 0.029347738933412137im … -0.038662140354835464 - 0.03758174074492414im -0.010236712475880934 - 0.011683969741431766im; -0.005185135471146254 + 0.0017794587932131178im 0.010902771742073965 - 0.0015643173867113036im … -0.019272785821724946 + 0.0008323404241268734im -0.009050276665355367 - 0.027093738792051233im; … ; 0.04857922624174344 + 0.015914240810118475im 0.02537133138179622 - 0.02425931654591667im … -0.006936977776491525 - 0.033207696400713686im -0.026834499088912826 + 0.00860305637726313im; 0.03268917048968172 - 0.06299900482863281im -0.035074738560829 - 0.027138466147999016im … -0.006067781407306535 - 0.04533550796181249im 0.01735248690625603 - 0.015709104880684124im;;; 0.11205429061408274 + 0.006135122813041478im 0.06348206660083755 - 0.009725744055420156im … -0.0340906170367653 + 0.05582558856959528im 0.09140340200620123 + 0.08861016934426483im; 0.010132086148385313 - 0.03510976938216251im 0.02274740473012033 - 0.049452556116219466im … 0.04868112703505272 + 0.05405635279961753im 0.09949519402808613 - 0.02010248881992734im; … ; 0.0272339971462648 + 0.02247311759057305im 0.024357819377843145 + 0.030342656842545467im … 0.07296068570505983 - 0.00896739073938218im 0.036173382420775474 - 0.008519645344635896im; 0.04030886666353381 + 0.040756812979013256im 0.07153461929175654 + 0.041044367646624im … 0.016266422308282985 - 0.058405629707021164im -0.0018511127396058785 + 0.05014303863638843im;;; 0.06713879168635731 - 0.07629643071233225im 0.01701226796889157 - 0.005715361806186741im … 0.1056336336780447 + 0.11180366125691168im 0.23035775721188095 - 0.01176745826747554im; -0.02471473548786517 + 0.02574239549367821im 0.031013871572114753 + 0.05271994774940093im … 0.13457687216872027 - 0.003821847695500284im 0.054535982148382595 - 0.09339247096198122im; … ; 0.07165680232760202 + 0.07299938100218328im 0.0780269351544932 + 0.02076359571298894im … 0.024196913719143454 - 0.03267903089102155im 0.005969938383909612 + 0.04391606129234932im; 0.1674558857430865 + 0.01350328985875251im 0.08199262501620985 - 0.024582500100986966im … -0.010565072149469121 + 0.04033162392604663im 0.11294859672560104 + 0.1131930595153371im;;; … ;;; 0.03166395717257656 - 0.03141657239797271im -0.04827508722097215 + 0.014946991013860107im … -0.014784042620822946 + 0.012206455155368163im 0.041664782813955276 + 0.027687457044299688im; -0.0097077739068498 - 0.02685562690930795im -0.0016321329842193116 + 0.043529204008186016im … 0.03683830179903721 + 0.023228356482540957im 0.06928665662176167 - 0.031169906298296666im; … ; 0.0013955968497852411 + 0.027438905669330882im -0.00568831012517821 - 0.033578259715530134im … -0.15881928331777784 - 0.03407071894805909im -0.0627995306290268 + 0.03308420512815085im; 0.008479879649200592 - 0.007302915666734154im -0.05816604866542776 - 0.026020490705186507im … -0.05203023747881606 - 0.0005079669488717853im -0.017332582016444165 - 0.001998753295169379im;;; -0.018891516796793267 - 0.02259830286174399im -0.014067156835846549 + 0.05335652513239357im … -0.04049119668194644 - 0.05380191909353186im -0.005878164717291676 - 0.029747531600394696im; -0.013725663968014914 + 0.034475402300116156im 0.06018326354105864 + 0.03963349073283119im … 0.006434488896755575 - 0.016923106330067765im -0.008723777978975413 - 0.03732059316914194im; … ; -0.05685657927466626 - 0.07253326188068657im -0.09615951578664096 - 0.00800124999428im … -0.03157401756007608 + 0.007130513800398926im 0.010456506427674475 - 0.09728907079205301im; -0.06834349025906528 - 0.015771480578127647im -0.0746475261021663 + 0.05499327139233304im … -0.013877806569416803 - 0.08162452271107312im -0.06450057550878374 - 0.07610660487445019im;;; 0.010871000299600656 - 0.03248685688842627im -0.006252359958778403 + 0.00037526370042432946im … -0.10529272302623316 - 0.044945777714984286im -0.010432743182151566 - 0.02280365251271573im; 0.026062502270777183 + 0.001855168588959271im 0.03312107075186623 - 0.00713587915783085im … -0.04141022571555606 + 0.012408019239869367im -0.0015419812280899337 + 0.0026956554555862995im; … ; -0.0969374661432346 + 0.012723558674142823im -0.018315472175613707 + 0.04811704164401875im … 0.013150334095112824 - 0.11552233806221868im -0.096966679586069 - 0.12005472694828179im; 0.019143816258088184 + 0.0038650137484258426im 0.005063901298438783 + 0.003927943715217593im … -0.08845900204002032 - 0.12838455450121272im -0.12251701552260147 - 0.026923934822759166im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.58978454131301e-5 0.0011262712728541703 … 0.006697037550146642 0.0011262712728541753; 0.0011262712728541703 0.0052743344574249455 … 0.005274334457424981 0.001126271272854177; … ; 0.006697037550146636 0.00527433445742498 … 0.02324475419111581 0.012258986825319253; 0.0011262712728541788 0.0011262712728541805 … 0.012258986825319259 0.0037700086299557807;;; 0.0011262712728541695 0.005274334457424952 … 0.005274334457424991 0.0011262712728541766; 0.005274334457424952 0.014620065304774364 … 0.005274334457424983 0.0025880808748932243; … ; 0.005274334457424979 0.005274334457424976 … 0.0181076866462109 0.008922003044817724; 0.0011262712728541777 0.002588080874893227 … 0.008922003044817729 0.002588080874893241;;; 0.0066970375501466 0.016412109101655876 … 0.006697037550146635 0.0037700086299557664; 0.01641210910165588 0.03127783931593361 … 0.008922003044817701 0.008922003044817684; … ; 0.0066970375501466265 0.0089220030448177 … 0.01647675635951914 0.008922003044817722; 0.0037700086299557664 0.00892200304481768 … 0.008922003044817732 0.0037700086299557764;;; … ;;; 0.01985383985345646 0.016412109101655883 … 0.037156673635713434 0.027190800686628804; 0.016412109101655886 0.014620065304774369 … 0.032301272126486646 0.022322100931767112; … ; 0.037156673635713434 0.03230127212648665 … 0.04629698070152334 0.04263658273149495; 0.027190800686628807 0.022322100931767112 … 0.042636582731494954 0.034772229142043504;;; 0.0066970375501466065 0.0052743344574249585 … 0.023244754191115775 0.012258986825319224; 0.005274334457424963 0.005274334457424949 … 0.01810768664621086 0.00892200304481769; … ; 0.023244754191115772 0.01810768664621086 … 0.040371110335635216 0.03149160381144255; 0.012258986825319227 0.00892200304481769 … 0.03149160381144256 0.02004716343280709;;; 0.0011262712728541712 0.0011262712728541703 … 0.012258986825319245 0.003770008629955765; 0.0011262712728541703 0.002588080874893213 … 0.008922003044817708 0.0025880808748932256; … ; 0.012258986825319236 0.008922003044817705 … 0.031491603811442566 0.020047163432807102; 0.0037700086299557673 0.0025880808748932295 … 0.02004716343280711 0.00895260349684953;;;;], eigenvalues = [[-0.17836835653938357, 0.26249194499126904, 0.2624919449912694, 0.2624919449912695, 0.3546921481676777, 0.3546921481676786, 0.3546921481948289], [-0.12755037617927945, 0.06475320594677877, 0.22545166517398013, 0.22545166517398058, 0.3219776496114017, 0.38922276908491077, 0.3892227690849116], [-0.10818729216517511, 0.0775500347341655, 0.1727832801146109, 0.17278328011461155, 0.2843518536201396, 0.33054764843348355, 0.5267232426392663], [-0.05777325374451835, 0.012724782205367345, 0.09766073750141263, 0.1841782533296041, 0.31522841796022677, 0.4720312283625533, 0.49791351849062626]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930570454, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.3234393859936649 + 0.8927993340133733im 1.3357432418699846e-13 + 7.88398581334811e-14im … 3.704180853402632e-13 + 5.555403752514372e-13im 1.7086279096801476e-7 + 9.929652283648689e-8im; 0.042123971082766894 + 0.0899831553828598im 0.06336619457797604 - 0.11172151500157516im … 0.23303255790883465 + 0.21931665545032278im 0.43584298358243806 - 0.19473846148360766im; … ; 0.00400494930615204 - 0.011054980401767755im 0.011981971235048152 + 0.03238647650208741im … -0.00041354613493947364 - 0.09832932418616325im -0.045560156897758046 - 0.024783840105701217im; 0.042123971082835346 + 0.08998315538283208im 0.22259017863822467 + 0.24322934593071738im … -0.3526808504586016 - 0.3614906869785466im 0.01858247092985059 - 0.07149963242053821im], [0.15296552303228406 + 0.9084493080543224im 0.17310336005353125 - 0.10609787186793088im … 1.871424424482929e-10 + 3.6477626777643453e-11im 1.1384219381081913e-10 - 7.282632219543529e-11im; 0.0509606042883988 + 0.03627225575449243im -0.0021024531776957225 + 0.00876058861985165im … -3.802513486476723e-10 - 3.2792596485051284e-10im -6.607976924907562e-11 + 4.77826427659956e-10im; … ; -0.0008206322055630189 - 0.004873665284154054im -0.07207733499991166 + 0.04417737385935032im … 0.01429924073627057 - 0.013750419895990969im -0.00115950555651724 - 0.10350829710628436im; 0.09524890513998648 + 0.06779536262999583im 0.023364389260592887 - 0.09735570087292855im … 0.0017160158129130812 - 0.08770388369194759im -0.3272685803772194 - 0.32001764524482873im], [0.636143293223392 - 0.6722598997814646im -1.3678973025003101e-15 + 1.4811617333631656e-14im … -5.583536260389615e-11 - 6.406066690618562e-11im 1.9436008308976518e-8 - 2.9770802490162825e-8im; -0.0018910553230693432 - 0.0685076218004153im -0.050079135976406675 + 0.014716180916934926im … 0.024075091589472717 - 0.009713477404037281im -0.0036396399465444323 + 0.003608085246737699im; … ; -0.007282137984739182 + 0.0076955764588684476im -7.055686684724912e-14 + 4.696046658406725e-15im … 7.434674918154067e-11 - 1.9360415968002426e-10im -0.013484109816222434 + 0.05215105827965708im; -0.004421544905721092 - 0.16018015046259493im 0.28134542174554067 - 0.08267575000715852im … 0.3450672670841711 - 0.13922285870828222im 0.0775645471873133 + 0.13495831863655214im], [-0.4325506962847295 + 0.6721750248085047im -8.485416428202852e-15 + 2.934953468682386e-14im … 0.1597923426772806 - 0.08649685511429372im -1.0845022194830903e-6 - 2.193342795015758e-5im; 0.08306559633322222 + 0.3829523545150657im -0.5136304897592465 + 0.3486272173251971im … -0.05191522673199439 + 0.17445698338162755im 4.287791547002324e-6 + 6.017199633332597e-6im; … ; 0.007170808160327715 - 0.011143290704353532im 0.0002493536424801662 + 4.771678657672166e-5im … -0.011469787931763927 + 0.0062081106181252005im 0.04511889137773935 + 0.009448027587336441im; 0.014221976250571422 + 0.06556672715896444im 0.004396276359453659 - 0.0029839770503524454im … -0.04093815538971335 + 0.13753462421655863im 0.39447747134868516 - 0.2578078534814563im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653938357, 0.26249194499126904, 0.2624919449912694, 0.2624919449912695, 0.3546921481676777, 0.3546921481676786, 0.3546921481948289], [-0.12755037617927945, 0.06475320594677877, 0.22545166517398013, 0.22545166517398058, 0.3219776496114017, 0.38922276908491077, 0.3892227690849116], [-0.10818729216517511, 0.0775500347341655, 0.1727832801146109, 0.17278328011461155, 0.2843518536201396, 0.33054764843348355, 0.5267232426392663], [-0.05777325374451835, 0.012724782205367345, 0.09766073750141263, 0.1841782533296041, 0.31522841796022677, 0.4720312283625533, 0.49791351849062626]], X = [[-0.3234393859936649 + 0.8927993340133733im 1.3357432418699846e-13 + 7.88398581334811e-14im … 3.704180853402632e-13 + 5.555403752514372e-13im 1.7086279096801476e-7 + 9.929652283648689e-8im; 0.042123971082766894 + 0.0899831553828598im 0.06336619457797604 - 0.11172151500157516im … 0.23303255790883465 + 0.21931665545032278im 0.43584298358243806 - 0.19473846148360766im; … ; 0.00400494930615204 - 0.011054980401767755im 0.011981971235048152 + 0.03238647650208741im … -0.00041354613493947364 - 0.09832932418616325im -0.045560156897758046 - 0.024783840105701217im; 0.042123971082835346 + 0.08998315538283208im 0.22259017863822467 + 0.24322934593071738im … -0.3526808504586016 - 0.3614906869785466im 0.01858247092985059 - 0.07149963242053821im], [0.15296552303228406 + 0.9084493080543224im 0.17310336005353125 - 0.10609787186793088im … 1.871424424482929e-10 + 3.6477626777643453e-11im 1.1384219381081913e-10 - 7.282632219543529e-11im; 0.0509606042883988 + 0.03627225575449243im -0.0021024531776957225 + 0.00876058861985165im … -3.802513486476723e-10 - 3.2792596485051284e-10im -6.607976924907562e-11 + 4.77826427659956e-10im; … ; -0.0008206322055630189 - 0.004873665284154054im -0.07207733499991166 + 0.04417737385935032im … 0.01429924073627057 - 0.013750419895990969im -0.00115950555651724 - 0.10350829710628436im; 0.09524890513998648 + 0.06779536262999583im 0.023364389260592887 - 0.09735570087292855im … 0.0017160158129130812 - 0.08770388369194759im -0.3272685803772194 - 0.32001764524482873im], [0.636143293223392 - 0.6722598997814646im -1.3678973025003101e-15 + 1.4811617333631656e-14im … -5.583536260389615e-11 - 6.406066690618562e-11im 1.9436008308976518e-8 - 2.9770802490162825e-8im; -0.0018910553230693432 - 0.0685076218004153im -0.050079135976406675 + 0.014716180916934926im … 0.024075091589472717 - 0.009713477404037281im -0.0036396399465444323 + 0.003608085246737699im; … ; -0.007282137984739182 + 0.0076955764588684476im -7.055686684724912e-14 + 4.696046658406725e-15im … 7.434674918154067e-11 - 1.9360415968002426e-10im -0.013484109816222434 + 0.05215105827965708im; -0.004421544905721092 - 0.16018015046259493im 0.28134542174554067 - 0.08267575000715852im … 0.3450672670841711 - 0.13922285870828222im 0.0775645471873133 + 0.13495831863655214im], [-0.4325506962847295 + 0.6721750248085047im -8.485416428202852e-15 + 2.934953468682386e-14im … 0.1597923426772806 - 0.08649685511429372im -1.0845022194830903e-6 - 2.193342795015758e-5im; 0.08306559633322222 + 0.3829523545150657im -0.5136304897592465 + 0.3486272173251971im … -0.05191522673199439 + 0.17445698338162755im 4.287791547002324e-6 + 6.017199633332597e-6im; … ; 0.007170808160327715 - 0.011143290704353532im 0.0002493536424801662 + 4.771678657672166e-5im … -0.011469787931763927 + 0.0062081106181252005im 0.04511889137773935 + 0.009448027587336441im; 0.014221976250571422 + 0.06556672715896444im 0.004396276359453659 - 0.0029839770503524454im … -0.04093815538971335 + 0.13753462421655863im 0.39447747134868516 - 0.2578078534814563im]], residual_norms = [[4.341012223957889e-12, 3.563248916485363e-12, 2.7318061713150704e-12, 3.839318969729185e-12, 8.191881996103136e-12, 1.6221472487816576e-11, 3.0310188125842786e-6], [0.0, 0.0, 5.629884031460465e-12, 5.3933131008908985e-12, 6.122598419041056e-10, 1.4373030944446086e-8, 1.4219653683365662e-8], [1.3531787413516419e-12, 2.190828353809939e-12, 1.8077485883569208e-12, 2.4433636891896896e-12, 5.820857494598587e-11, 1.87425918492082e-9, 8.852813850587661e-7], [0.0, 0.0, 0.0, 5.797591850703354e-12, 3.2030914066229606e-10, 7.140577778190144e-5, 3.45860888732948e-5]], n_iter = [3, 3, 3, 3], converged = 1, n_matvec = 107)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21070670906550507, 0.027627276757644932, 0.0023104990774568614, 0.0002577467155573771, 9.583785525947453e-6, 9.347195379830974e-7, 3.669801595645167e-8, 2.2816293968945695e-9, 2.500187474211654e-10, 5.900747050737005e-11], history_Etot = [-7.905256948749875, -7.910544412343707, -7.910593445997803, -7.9105943932547085, -7.91059439644196, -7.91059439648841, -7.910594396488502, -7.910594396488506, -7.910594396488506, -7.910594396488504], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000b0f921ca)