Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#826"{DFTK.var"#anderson#825#827"{Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.004730332685941515 + 0.0010196998954946379im -0.026939090341002645 + 0.05100410884450415im … 0.03466146563112088 + 0.06698898934942227im 0.02287766443334524 + 0.04048625271206961im; -0.05100069915718657 + 0.021792377393458753im -0.01679179287760353 + 0.09005341605837139im … 0.06489791474636661 - 0.007114129621005532im 0.00043115709663064396 - 0.016102913862465724im; … ; -0.008417800635175577 + 0.024719418762032472im 0.03901977444182574 - 0.015542698567114883im … -0.015880547886231194 + 0.008737082950165212im -0.05342063477771828 - 0.0043500674344014835im; 0.02304618223819789 + 0.004253286240299676im -0.01582443181544652 - 0.010335640156565053im … -0.03819083101288412 + 0.049513206862459004im -0.0192582037368035 + 0.06313018868471604im;;; -0.07563837847148958 - 0.010648312416493888im -0.07283591082911903 + 0.02684312188255776im … 0.01603039863724394 + 0.04801598981766181im -0.01845389956103083 + 0.04257574661026016im; -0.014714359015936209 + 0.08265510654917896im -0.0184771472409579 + 0.05628513334168909im … -0.0019784560771500116 + 0.039444063882729835im -0.004142275763135557 + 0.1032258277568465im; … ; 0.018950014400639776 + 0.002649001590735056im 0.013141902438500386 - 0.04987276078802004im … -0.036575692301247374 - 0.023927579672456477im -0.06211879446518537 + 0.01725349284838635im; -0.01715555370731399 - 0.033870526738928375im -0.060927168397830606 - 0.0367398529545786im … -0.03671111419351826 + 0.05271637939062995im -0.01511845324400316 + 0.047760067552076846im;;; -0.10085386131375446 + 0.02840812978255626im -0.03854382184425146 + 0.024460199848417536im … 0.028203989194495186 + 0.011922032983716451im -0.04475184135320307 + 0.0009456519013031281im; 0.025248126054480353 + 0.06329647222892326im -0.011000895346365228 - 0.022192643497237152im … 0.01413164788489141 + 0.05616661239209732im 0.01937449933959355 + 0.08393163435499043im; … ; 0.0337352763627845 - 0.06694079728257252im -0.028874976385034515 - 0.051469048293249164im … -0.05059828112071695 + 0.019319490237525168im 0.02301613793738838 + 0.028894252259681372im; -0.07528889366088476 - 0.0751433216386038im -0.05920342660840532 - 0.00022538938813915915im … 0.011587064544340095 + 0.05902847207298438im 0.028245641278168573 - 0.03820531652920514im;;; … ;;; 0.005221061955509903 + 0.0804906039943103im 0.08708406076971142 + 0.07033922256902443im … 0.030229433032985507 + 0.06062177587184919im 0.02908061542101336 + 0.015552267156222602im; 0.016504184217809418 + 0.05948834473594571im 0.033191294220699226 + 0.017120573573690623im … -0.014186693181027167 + 0.04574334497976465im -0.014423263049246397 + 0.03818515009993368im; … ; 0.12511854328133187 - 0.035165232889966855im -0.014628392809403742 + 0.002659892217781246im … -0.015440298932391891 + 0.14586676521598216im 0.1575904248933371 + 0.12796144790712127im; 0.02284596369801605 - 0.017861313440415045im 0.019411269401612505 + 0.09900321531530709im … 0.06910617141236303 + 0.14219042394116171im 0.15513053424788334 + 0.020978823317052427im;;; 0.09067535112343458 + 0.14638856041735643im 0.13688774759041547 + 0.01310071245899291im … -0.004186288542838559 + 0.0009410418672910481im -0.040518840118333836 + 0.07646972145421299im; 0.05820925769759285 + 0.0774467029805252im 0.03499640277797254 + 0.00893305883524293im … -0.03964832965560636 + 0.022707108235871003im -0.038208737682076596 + 0.08278253690402984im; … ; -0.00611647792832222 - 0.02382806011865843im 0.018530255173832083 + 0.10492100855677139im … 0.08203326780489906 + 0.11735121781162511im 0.12683630766771656 - 0.025758593207691496im; 0.00850311661067988 + 0.1281349152494433im 0.14997312847013342 + 0.10762766786977146im … 0.08116096289741871 + 0.03473050846003335im 0.012548304928341815 - 0.02119758591539021im;;; 0.12226580561386374 + 0.03636451265864371im 0.02873911555643398 - 0.0013941429888225457im … -0.04809639486664555 + 0.006407640152509896im 0.004051608546104797 + 0.1017975024132007im; 0.017215531756021942 + 0.016836482988065622im -0.008305497238720427 + 0.05328792929173103im … -0.005730346012883188 + 0.0342072431794217im 0.00664048390052289 + 0.05071956577880618im; … ; -0.008952062650846731 + 0.08297046525405666im 0.09887916585423387 + 0.06301333428281121im … 0.01910513331764383 + 0.01498045751321326im -0.028577877318210945 - 0.010824031658942152im; 0.10717275091963623 + 0.11322439353112246im 0.12748758438882904 - 0.017131327555603638im … -0.014951504472124857 - 0.008798813820086172im -0.042062429949945454 + 0.08667871114377362im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.004730332685941515 + 0.0010196998954946379im -0.026939090341002645 + 0.05100410884450415im … 0.03466146563112088 + 0.06698898934942227im 0.02287766443334524 + 0.04048625271206961im; -0.05100069915718657 + 0.021792377393458753im -0.01679179287760353 + 0.09005341605837139im … 0.06489791474636661 - 0.007114129621005532im 0.00043115709663064396 - 0.016102913862465724im; … ; -0.008417800635175577 + 0.024719418762032472im 0.03901977444182574 - 0.015542698567114883im … -0.015880547886231194 + 0.008737082950165212im -0.05342063477771828 - 0.0043500674344014835im; 0.02304618223819789 + 0.004253286240299676im -0.01582443181544652 - 0.010335640156565053im … -0.03819083101288412 + 0.049513206862459004im -0.0192582037368035 + 0.06313018868471604im;;; -0.07563837847148958 - 0.010648312416493888im -0.07283591082911903 + 0.02684312188255776im … 0.01603039863724394 + 0.04801598981766181im -0.01845389956103083 + 0.04257574661026016im; -0.014714359015936209 + 0.08265510654917896im -0.0184771472409579 + 0.05628513334168909im … -0.0019784560771500116 + 0.039444063882729835im -0.004142275763135557 + 0.1032258277568465im; … ; 0.018950014400639776 + 0.002649001590735056im 0.013141902438500386 - 0.04987276078802004im … -0.036575692301247374 - 0.023927579672456477im -0.06211879446518537 + 0.01725349284838635im; -0.01715555370731399 - 0.033870526738928375im -0.060927168397830606 - 0.0367398529545786im … -0.03671111419351826 + 0.05271637939062995im -0.01511845324400316 + 0.047760067552076846im;;; -0.10085386131375446 + 0.02840812978255626im -0.03854382184425146 + 0.024460199848417536im … 0.028203989194495186 + 0.011922032983716451im -0.04475184135320307 + 0.0009456519013031281im; 0.025248126054480353 + 0.06329647222892326im -0.011000895346365228 - 0.022192643497237152im … 0.01413164788489141 + 0.05616661239209732im 0.01937449933959355 + 0.08393163435499043im; … ; 0.0337352763627845 - 0.06694079728257252im -0.028874976385034515 - 0.051469048293249164im … -0.05059828112071695 + 0.019319490237525168im 0.02301613793738838 + 0.028894252259681372im; -0.07528889366088476 - 0.0751433216386038im -0.05920342660840532 - 0.00022538938813915915im … 0.011587064544340095 + 0.05902847207298438im 0.028245641278168573 - 0.03820531652920514im;;; … ;;; 0.005221061955509903 + 0.0804906039943103im 0.08708406076971142 + 0.07033922256902443im … 0.030229433032985507 + 0.06062177587184919im 0.02908061542101336 + 0.015552267156222602im; 0.016504184217809418 + 0.05948834473594571im 0.033191294220699226 + 0.017120573573690623im … -0.014186693181027167 + 0.04574334497976465im -0.014423263049246397 + 0.03818515009993368im; … ; 0.12511854328133187 - 0.035165232889966855im -0.014628392809403742 + 0.002659892217781246im … -0.015440298932391891 + 0.14586676521598216im 0.1575904248933371 + 0.12796144790712127im; 0.02284596369801605 - 0.017861313440415045im 0.019411269401612505 + 0.09900321531530709im … 0.06910617141236303 + 0.14219042394116171im 0.15513053424788334 + 0.020978823317052427im;;; 0.09067535112343458 + 0.14638856041735643im 0.13688774759041547 + 0.01310071245899291im … -0.004186288542838559 + 0.0009410418672910481im -0.040518840118333836 + 0.07646972145421299im; 0.05820925769759285 + 0.0774467029805252im 0.03499640277797254 + 0.00893305883524293im … -0.03964832965560636 + 0.022707108235871003im -0.038208737682076596 + 0.08278253690402984im; … ; -0.00611647792832222 - 0.02382806011865843im 0.018530255173832083 + 0.10492100855677139im … 0.08203326780489906 + 0.11735121781162511im 0.12683630766771656 - 0.025758593207691496im; 0.00850311661067988 + 0.1281349152494433im 0.14997312847013342 + 0.10762766786977146im … 0.08116096289741871 + 0.03473050846003335im 0.012548304928341815 - 0.02119758591539021im;;; 0.12226580561386374 + 0.03636451265864371im 0.02873911555643398 - 0.0013941429888225457im … -0.04809639486664555 + 0.006407640152509896im 0.004051608546104797 + 0.1017975024132007im; 0.017215531756021942 + 0.016836482988065622im -0.008305497238720427 + 0.05328792929173103im … -0.005730346012883188 + 0.0342072431794217im 0.00664048390052289 + 0.05071956577880618im; … ; -0.008952062650846731 + 0.08297046525405666im 0.09887916585423387 + 0.06301333428281121im … 0.01910513331764383 + 0.01498045751321326im -0.028577877318210945 - 0.010824031658942152im; 0.10717275091963623 + 0.11322439353112246im 0.12748758438882904 - 0.017131327555603638im … -0.014951504472124857 - 0.008798813820086172im -0.042062429949945454 + 0.08667871114377362im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.004730332685941515 + 0.0010196998954946379im -0.026939090341002645 + 0.05100410884450415im … 0.03466146563112088 + 0.06698898934942227im 0.02287766443334524 + 0.04048625271206961im; -0.05100069915718657 + 0.021792377393458753im -0.01679179287760353 + 0.09005341605837139im … 0.06489791474636661 - 0.007114129621005532im 0.00043115709663064396 - 0.016102913862465724im; … ; -0.008417800635175577 + 0.024719418762032472im 0.03901977444182574 - 0.015542698567114883im … -0.015880547886231194 + 0.008737082950165212im -0.05342063477771828 - 0.0043500674344014835im; 0.02304618223819789 + 0.004253286240299676im -0.01582443181544652 - 0.010335640156565053im … -0.03819083101288412 + 0.049513206862459004im -0.0192582037368035 + 0.06313018868471604im;;; -0.07563837847148958 - 0.010648312416493888im -0.07283591082911903 + 0.02684312188255776im … 0.01603039863724394 + 0.04801598981766181im -0.01845389956103083 + 0.04257574661026016im; -0.014714359015936209 + 0.08265510654917896im -0.0184771472409579 + 0.05628513334168909im … -0.0019784560771500116 + 0.039444063882729835im -0.004142275763135557 + 0.1032258277568465im; … ; 0.018950014400639776 + 0.002649001590735056im 0.013141902438500386 - 0.04987276078802004im … -0.036575692301247374 - 0.023927579672456477im -0.06211879446518537 + 0.01725349284838635im; -0.01715555370731399 - 0.033870526738928375im -0.060927168397830606 - 0.0367398529545786im … -0.03671111419351826 + 0.05271637939062995im -0.01511845324400316 + 0.047760067552076846im;;; -0.10085386131375446 + 0.02840812978255626im -0.03854382184425146 + 0.024460199848417536im … 0.028203989194495186 + 0.011922032983716451im -0.04475184135320307 + 0.0009456519013031281im; 0.025248126054480353 + 0.06329647222892326im -0.011000895346365228 - 0.022192643497237152im … 0.01413164788489141 + 0.05616661239209732im 0.01937449933959355 + 0.08393163435499043im; … ; 0.0337352763627845 - 0.06694079728257252im -0.028874976385034515 - 0.051469048293249164im … -0.05059828112071695 + 0.019319490237525168im 0.02301613793738838 + 0.028894252259681372im; -0.07528889366088476 - 0.0751433216386038im -0.05920342660840532 - 0.00022538938813915915im … 0.011587064544340095 + 0.05902847207298438im 0.028245641278168573 - 0.03820531652920514im;;; … ;;; 0.005221061955509903 + 0.0804906039943103im 0.08708406076971142 + 0.07033922256902443im … 0.030229433032985507 + 0.06062177587184919im 0.02908061542101336 + 0.015552267156222602im; 0.016504184217809418 + 0.05948834473594571im 0.033191294220699226 + 0.017120573573690623im … -0.014186693181027167 + 0.04574334497976465im -0.014423263049246397 + 0.03818515009993368im; … ; 0.12511854328133187 - 0.035165232889966855im -0.014628392809403742 + 0.002659892217781246im … -0.015440298932391891 + 0.14586676521598216im 0.1575904248933371 + 0.12796144790712127im; 0.02284596369801605 - 0.017861313440415045im 0.019411269401612505 + 0.09900321531530709im … 0.06910617141236303 + 0.14219042394116171im 0.15513053424788334 + 0.020978823317052427im;;; 0.09067535112343458 + 0.14638856041735643im 0.13688774759041547 + 0.01310071245899291im … -0.004186288542838559 + 0.0009410418672910481im -0.040518840118333836 + 0.07646972145421299im; 0.05820925769759285 + 0.0774467029805252im 0.03499640277797254 + 0.00893305883524293im … -0.03964832965560636 + 0.022707108235871003im -0.038208737682076596 + 0.08278253690402984im; … ; -0.00611647792832222 - 0.02382806011865843im 0.018530255173832083 + 0.10492100855677139im … 0.08203326780489906 + 0.11735121781162511im 0.12683630766771656 - 0.025758593207691496im; 0.00850311661067988 + 0.1281349152494433im 0.14997312847013342 + 0.10762766786977146im … 0.08116096289741871 + 0.03473050846003335im 0.012548304928341815 - 0.02119758591539021im;;; 0.12226580561386374 + 0.03636451265864371im 0.02873911555643398 - 0.0013941429888225457im … -0.04809639486664555 + 0.006407640152509896im 0.004051608546104797 + 0.1017975024132007im; 0.017215531756021942 + 0.016836482988065622im -0.008305497238720427 + 0.05328792929173103im … -0.005730346012883188 + 0.0342072431794217im 0.00664048390052289 + 0.05071956577880618im; … ; -0.008952062650846731 + 0.08297046525405666im 0.09887916585423387 + 0.06301333428281121im … 0.01910513331764383 + 0.01498045751321326im -0.028577877318210945 - 0.010824031658942152im; 0.10717275091963623 + 0.11322439353112246im 0.12748758438882904 - 0.017131327555603638im … -0.014951504472124857 - 0.008798813820086172im -0.042062429949945454 + 0.08667871114377362im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722765 -11.100308396742514 … -8.289845772412658 -11.100308396742575; -11.100308396742514 -9.13005782594799 … -9.130057795896697 -11.10030835675954; … ; -8.289845772412658 -9.130057795896697 … -4.1495899216433925 -6.2879561981994705; -11.100308396742573 -11.100308356759541 … -6.2879561981994705 -9.111848223577683;;; -11.100308396742516 -9.130057825947988 … -9.130057795896699 -11.10030835675954; -9.13005782594799 -6.903159481982285 … -9.130057827297671 -10.053883826552386; … ; -9.130057795896697 -9.130057827297671 … -5.294353669214543 -7.547399206521838; -11.100308356759538 -10.053883826552386 … -7.547399206521839 -10.053883826552491;;; -8.289845772412956 -6.307621931516881 … -8.28984578101191 -9.111848193526352; -6.307621931516882 -4.516655665815848 … -7.547399237611669 -7.54739920652207; … ; -8.289845781011909 -7.5473992376116685 … -5.768969083581394 -7.547399237611741; -9.111848193526352 -7.54739920652207 … -7.547399237611742 -9.11184822492759;;; … ;;; -5.301031718249928 -6.307621955789089 … -2.5497035732760884 -3.8495821793879266; -6.307621955789089 -6.903159495209113 … -3.3290606985463804 -4.878419358630787; … ; -2.549703573276088 -3.329060698546381 … -1.2567984709025177 -1.8141947460411068; -3.8495821793879275 -4.878419358630789 … -1.8141947460411068 -2.714767335322691;;; -8.28984577241266 -9.130057795896697 … -4.149589921643394 -6.287956198199469; -9.130057795896699 -9.13005782729767 … -5.2943536692145425 -7.5473992065218365; … ; -4.149589921643394 -5.294353669214543 … -1.9094492399153524 -2.8946123678523414; -6.28795619819947 -7.5473992065218365 … -2.8946123678523406 -4.485542759372147;;; -11.100308396742575 -11.10030835675954 … -6.2879561981994705 -9.111848223577681; -11.10030835675954 -10.053883826552386 … -7.54739920652184 -10.053883826552491; … ; -6.287956198199469 -7.54739920652184 … -2.8946123678523406 -4.485542759372146; -9.111848223577683 -10.053883826552491 … -4.485542759372147 -6.871104500135442]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.004730332685941515 + 0.0010196998954946379im -0.026939090341002645 + 0.05100410884450415im … 0.03466146563112088 + 0.06698898934942227im 0.02287766443334524 + 0.04048625271206961im; -0.05100069915718657 + 0.021792377393458753im -0.01679179287760353 + 0.09005341605837139im … 0.06489791474636661 - 0.007114129621005532im 0.00043115709663064396 - 0.016102913862465724im; … ; -0.008417800635175577 + 0.024719418762032472im 0.03901977444182574 - 0.015542698567114883im … -0.015880547886231194 + 0.008737082950165212im -0.05342063477771828 - 0.0043500674344014835im; 0.02304618223819789 + 0.004253286240299676im -0.01582443181544652 - 0.010335640156565053im … -0.03819083101288412 + 0.049513206862459004im -0.0192582037368035 + 0.06313018868471604im;;; -0.07563837847148958 - 0.010648312416493888im -0.07283591082911903 + 0.02684312188255776im … 0.01603039863724394 + 0.04801598981766181im -0.01845389956103083 + 0.04257574661026016im; -0.014714359015936209 + 0.08265510654917896im -0.0184771472409579 + 0.05628513334168909im … -0.0019784560771500116 + 0.039444063882729835im -0.004142275763135557 + 0.1032258277568465im; … ; 0.018950014400639776 + 0.002649001590735056im 0.013141902438500386 - 0.04987276078802004im … -0.036575692301247374 - 0.023927579672456477im -0.06211879446518537 + 0.01725349284838635im; -0.01715555370731399 - 0.033870526738928375im -0.060927168397830606 - 0.0367398529545786im … -0.03671111419351826 + 0.05271637939062995im -0.01511845324400316 + 0.047760067552076846im;;; -0.10085386131375446 + 0.02840812978255626im -0.03854382184425146 + 0.024460199848417536im … 0.028203989194495186 + 0.011922032983716451im -0.04475184135320307 + 0.0009456519013031281im; 0.025248126054480353 + 0.06329647222892326im -0.011000895346365228 - 0.022192643497237152im … 0.01413164788489141 + 0.05616661239209732im 0.01937449933959355 + 0.08393163435499043im; … ; 0.0337352763627845 - 0.06694079728257252im -0.028874976385034515 - 0.051469048293249164im … -0.05059828112071695 + 0.019319490237525168im 0.02301613793738838 + 0.028894252259681372im; -0.07528889366088476 - 0.0751433216386038im -0.05920342660840532 - 0.00022538938813915915im … 0.011587064544340095 + 0.05902847207298438im 0.028245641278168573 - 0.03820531652920514im;;; … ;;; 0.005221061955509903 + 0.0804906039943103im 0.08708406076971142 + 0.07033922256902443im … 0.030229433032985507 + 0.06062177587184919im 0.02908061542101336 + 0.015552267156222602im; 0.016504184217809418 + 0.05948834473594571im 0.033191294220699226 + 0.017120573573690623im … -0.014186693181027167 + 0.04574334497976465im -0.014423263049246397 + 0.03818515009993368im; … ; 0.12511854328133187 - 0.035165232889966855im -0.014628392809403742 + 0.002659892217781246im … -0.015440298932391891 + 0.14586676521598216im 0.1575904248933371 + 0.12796144790712127im; 0.02284596369801605 - 0.017861313440415045im 0.019411269401612505 + 0.09900321531530709im … 0.06910617141236303 + 0.14219042394116171im 0.15513053424788334 + 0.020978823317052427im;;; 0.09067535112343458 + 0.14638856041735643im 0.13688774759041547 + 0.01310071245899291im … -0.004186288542838559 + 0.0009410418672910481im -0.040518840118333836 + 0.07646972145421299im; 0.05820925769759285 + 0.0774467029805252im 0.03499640277797254 + 0.00893305883524293im … -0.03964832965560636 + 0.022707108235871003im -0.038208737682076596 + 0.08278253690402984im; … ; -0.00611647792832222 - 0.02382806011865843im 0.018530255173832083 + 0.10492100855677139im … 0.08203326780489906 + 0.11735121781162511im 0.12683630766771656 - 0.025758593207691496im; 0.00850311661067988 + 0.1281349152494433im 0.14997312847013342 + 0.10762766786977146im … 0.08116096289741871 + 0.03473050846003335im 0.012548304928341815 - 0.02119758591539021im;;; 0.12226580561386374 + 0.03636451265864371im 0.02873911555643398 - 0.0013941429888225457im … -0.04809639486664555 + 0.006407640152509896im 0.004051608546104797 + 0.1017975024132007im; 0.017215531756021942 + 0.016836482988065622im -0.008305497238720427 + 0.05328792929173103im … -0.005730346012883188 + 0.0342072431794217im 0.00664048390052289 + 0.05071956577880618im; … ; -0.008952062650846731 + 0.08297046525405666im 0.09887916585423387 + 0.06301333428281121im … 0.01910513331764383 + 0.01498045751321326im -0.028577877318210945 - 0.010824031658942152im; 0.10717275091963623 + 0.11322439353112246im 0.12748758438882904 - 0.017131327555603638im … -0.014951504472124857 - 0.008798813820086172im -0.042062429949945454 + 0.08667871114377362im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488503), converged = true, ρ = [7.589784542361594e-5 0.0011262712728483946 … 0.00669703755012642 0.0011262712728484115; 0.001126271272848403 0.005274334457408119 … 0.005274334457408158 0.001126271272848415; … ; 0.0066970375501264195 0.0052743344574081585 … 0.023244754191113808 0.012258986825301733; 0.0011262712728484132 0.0011262712728484182 … 0.012258986825301736 0.0037700086299333286;;; 0.0011262712728484045 0.005274334457408131 … 0.00527433445740817 0.001126271272848411; 0.005274334457408128 0.014620065304772969 … 0.0052743344574081585 0.002588080874877913; … ; 0.005274334457408161 0.0052743344574081585 … 0.018107686646207103 0.008922003044799412; 0.0011262712728484093 0.002588080874877916 … 0.008922003044799419 0.0025880808748779322;;; 0.006697037550126387 0.01641210910165638 … 0.006697037550126417 0.003770008629933306; 0.01641210910165638 0.03127783931597654 … 0.008922003044799386 0.008922003044799372; … ; 0.0066970375501264135 0.008922003044799386 … 0.01647675635951481 0.008922003044799405; 0.0037700086299333087 0.008922003044799372 … 0.008922003044799415 0.003770008629933324;;; … ;;; 0.019853839853459742 0.01641210910165639 … 0.03715667363571537 0.02719080068663684; 0.01641210910165639 0.014620065304772967 … 0.03230127212650202 0.022322100931775442; … ; 0.03715667363571538 0.03230127212650203 … 0.046296980701470675 0.042636582731471966; 0.02719080068663684 0.022322100931775442 … 0.04263658273147197 0.03477222914204376;;; 0.006697037550126393 0.005274334457408133 … 0.023244754191113784 0.0122589868253017; 0.005274334457408133 0.00527433445740812 … 0.018107686646207058 0.008922003044799379; … ; 0.02324475419111379 0.018107686646207065 … 0.04037111033561107 0.03149160381143727; 0.012258986825301703 0.008922003044799379 … 0.03149160381143727 0.020047163432797895;;; 0.001126271272848405 0.001126271272848399 … 0.012258986825301722 0.003770008629933314; 0.0011262712728483976 0.0025880808748778923 … 0.008922003044799393 0.002588080874877915; … ; 0.012258986825301719 0.008922003044799396 … 0.031491603811437285 0.02004716343279791; 0.003770008629933312 0.002588080874877919 … 0.020047163432797915 0.008952603496824215;;;;], eigenvalues = [[-0.17836835653928187, 0.2624919449914904, 0.2624919449914909, 0.26249194499149114, 0.35469214816776734, 0.35469214816776745, 0.3546921481790903], [-0.1275503761791558, 0.06475320594688368, 0.2254516651741794, 0.22545166517417983, 0.3219776496114263, 0.38922276908495085, 0.3892227690849514], [-0.10818729216504942, 0.07755003473435904, 0.17278328011475003, 0.17278328011475008, 0.2843518536200565, 0.3305476484333476, 0.5267232426394619], [-0.05777325374435164, 0.012724782205527306, 0.09766073750142369, 0.18417825332975885, 0.31522841796013273, 0.4720312181741816, 0.49791351758686875]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993057738, n_iter = 10, ψ = Matrix{ComplexF64}[[0.6913500460584047 + 0.6509522263899606im -3.9541240653736843e-13 + 3.0044693909102283e-13im … -2.4588729043598397e-12 - 1.7397607457314086e-13im -2.9550625207379646e-7 - 7.72963675579257e-9im; 0.09930993970606208 - 0.0029888238425022163im -0.007201956781585012 + 0.20070372931493954im … -0.3327213124503627 - 0.25699710385852087im -0.1152090853721791 + 0.18653417142855322im; … ; -0.008560558816256893 - 0.008060337671726215im -0.05043293836243435 + 0.00915143119526301im … 0.0352468662607583 + 0.05942544051127816im 0.08055141811502606 + 0.024519839408806865im; 0.099309939706068 - 0.0029888238425099414im -0.25885896426600974 + 0.18331985249587993im … 0.22884672072410853 - 0.11357697550538161im 0.5080411152019759 - 0.14582628772219622im], [0.7780802031646831 + 0.49322387815720603im -0.16793001090301313 + 0.11410978535962761im … -1.0308326473731776e-11 - 2.1035482953809817e-11im 6.030970421512392e-11 - 7.122794666257698e-12im; 0.06103779815464911 - 0.013676509911625369im 0.001688734867598377 - 0.008849655184242251im … -1.0833055596617474e-10 + 5.837333055416161e-11im 9.992969540454226e-11 - 7.928153361660299e-11im; … ; -0.00417425875153856 - 0.002646056385292484im 0.06992323920586206 - 0.04751340022267701im … 0.06213482850143601 - 0.059402241196547im -0.06098708234993112 + 0.00025889664823041im; 0.11408387964750973 - 0.02556234592214511im -0.018766771703817086 + 0.09834549027645764im … 0.008544077864057628 - 0.3800143238059812im -0.18988100118159942 + 0.19150000242715987im], [0.8350313620926801 + 0.39916699098157643im -6.252615386543082e-16 + 1.0056967683290424e-14im … 1.2547009855117468e-11 + 4.920162634114061e-12im 4.3497759408115965e-9 + 5.0004989064632505e-9im; 0.06462227733078653 - 0.02282173541911241im 0.04083022777785333 + 0.032517354451083655im … 0.023005173861093974 + 0.012030115174567113im -0.0024227331887422213 - 0.0027872926914115858im; … ; -0.00955887402278228 - 0.004569393622870065im 3.6680476985793875e-14 - 1.5641884036848524e-14im … 2.731237768923787e-11 + 3.021139153438754e-11im -0.01564596157612548 + 0.05214263637215854im; 0.15109568591147776 - 0.05336032571536285im -0.22938490112102858 - 0.1826830400285487im … 0.3297321775459851 + 0.17242712748387426im 0.07355190623655423 + 0.1371915127097421im], [-0.7304495381865325 + 0.3245964278858737im 7.232772218874673e-15 - 5.681878459962695e-15im … 0.1746592233449792 - 0.049857549395652206im -3.074835526452167e-7 + 2.055183266020065e-8im; -0.1406886806464503 + 0.3657309041641383im -0.0048660589047900575 + 0.6207523968066525im … -0.08842079750399615 + 0.15906827462902504im 1.1352748614425482e-6 - 1.34058323468228e-6im; … ; 0.012109363258839257 - 0.005381146612197361im 0.00018092066843001205 - 0.0001781062673070645im … -0.012548978941799549 + 0.0035821649320669337im -0.043281977032064815 + 0.015864634956858886im; -0.024087843381796863 + 0.06261817723299762im 4.164966872307969e-5 - 0.005313156328415909im … -0.06965804756212558 + 0.1253146225417307im -0.1981778659005149 + 0.4275224607809987im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653928187, 0.2624919449914904, 0.2624919449914909, 0.26249194499149114, 0.35469214816776734, 0.35469214816776745, 0.3546921481790903], [-0.1275503761791558, 0.06475320594688368, 0.2254516651741794, 0.22545166517417983, 0.3219776496114263, 0.38922276908495085, 0.3892227690849514], [-0.10818729216504942, 0.07755003473435904, 0.17278328011475003, 0.17278328011475008, 0.2843518536200565, 0.3305476484333476, 0.5267232426394619], [-0.05777325374435164, 0.012724782205527306, 0.09766073750142369, 0.18417825332975885, 0.31522841796013273, 0.4720312181741816, 0.49791351758686875]], X = [[0.6913500460584047 + 0.6509522263899606im -3.9541240653736843e-13 + 3.0044693909102283e-13im … -2.4588729043598397e-12 - 1.7397607457314086e-13im -2.9550625207379646e-7 - 7.72963675579257e-9im; 0.09930993970606208 - 0.0029888238425022163im -0.007201956781585012 + 0.20070372931493954im … -0.3327213124503627 - 0.25699710385852087im -0.1152090853721791 + 0.18653417142855322im; … ; -0.008560558816256893 - 0.008060337671726215im -0.05043293836243435 + 0.00915143119526301im … 0.0352468662607583 + 0.05942544051127816im 0.08055141811502606 + 0.024519839408806865im; 0.099309939706068 - 0.0029888238425099414im -0.25885896426600974 + 0.18331985249587993im … 0.22884672072410853 - 0.11357697550538161im 0.5080411152019759 - 0.14582628772219622im], [0.7780802031646831 + 0.49322387815720603im -0.16793001090301313 + 0.11410978535962761im … -1.0308326473731776e-11 - 2.1035482953809817e-11im 6.030970421512392e-11 - 7.122794666257698e-12im; 0.06103779815464911 - 0.013676509911625369im 0.001688734867598377 - 0.008849655184242251im … -1.0833055596617474e-10 + 5.837333055416161e-11im 9.992969540454226e-11 - 7.928153361660299e-11im; … ; -0.00417425875153856 - 0.002646056385292484im 0.06992323920586206 - 0.04751340022267701im … 0.06213482850143601 - 0.059402241196547im -0.06098708234993112 + 0.00025889664823041im; 0.11408387964750973 - 0.02556234592214511im -0.018766771703817086 + 0.09834549027645764im … 0.008544077864057628 - 0.3800143238059812im -0.18988100118159942 + 0.19150000242715987im], [0.8350313620926801 + 0.39916699098157643im -6.252615386543082e-16 + 1.0056967683290424e-14im … 1.2547009855117468e-11 + 4.920162634114061e-12im 4.3497759408115965e-9 + 5.0004989064632505e-9im; 0.06462227733078653 - 0.02282173541911241im 0.04083022777785333 + 0.032517354451083655im … 0.023005173861093974 + 0.012030115174567113im -0.0024227331887422213 - 0.0027872926914115858im; … ; -0.00955887402278228 - 0.004569393622870065im 3.6680476985793875e-14 - 1.5641884036848524e-14im … 2.731237768923787e-11 + 3.021139153438754e-11im -0.01564596157612548 + 0.05214263637215854im; 0.15109568591147776 - 0.05336032571536285im -0.22938490112102858 - 0.1826830400285487im … 0.3297321775459851 + 0.17242712748387426im 0.07355190623655423 + 0.1371915127097421im], [-0.7304495381865325 + 0.3245964278858737im 7.232772218874673e-15 - 5.681878459962695e-15im … 0.1746592233449792 - 0.049857549395652206im -3.074835526452167e-7 + 2.055183266020065e-8im; -0.1406886806464503 + 0.3657309041641383im -0.0048660589047900575 + 0.6207523968066525im … -0.08842079750399615 + 0.15906827462902504im 1.1352748614425482e-6 - 1.34058323468228e-6im; … ; 0.012109363258839257 - 0.005381146612197361im 0.00018092066843001205 - 0.0001781062673070645im … -0.012548978941799549 + 0.0035821649320669337im -0.043281977032064815 + 0.015864634956858886im; -0.024087843381796863 + 0.06261817723299762im 4.164966872307969e-5 - 0.005313156328415909im … -0.06965804756212558 + 0.1253146225417307im -0.1981778659005149 + 0.4275224607809987im]], residual_norms = [[0.0, 3.921289035354127e-12, 1.7271354492500027e-12, 1.2836682841703118e-12, 1.834759317061263e-11, 2.008737070015283e-11, 2.7601393048685005e-6], [0.0, 0.0, 4.92703500810402e-12, 4.990766188424534e-12, 6.47179941345754e-10, 1.5510934008069525e-8, 1.4959651170254553e-8], [1.2058775763331976e-12, 2.2240068302449008e-12, 2.186523384740845e-12, 1.0860696828581167e-12, 2.1661585814674563e-11, 7.204773396460439e-10, 8.279139761512204e-7], [1.1023235515100026e-12, 1.1442335136656512e-12, 7.577506367066293e-13, 2.6853740755220328e-12, 1.665810191701055e-10, 8.449832655401127e-6, 4.272647027481166e-6]], n_iter = [4, 3, 3, 3], converged = 1, n_matvec = 116)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2106989987718649, 0.02760638992779215, 0.0023057689018869524, 0.0002565055222777131, 9.359457381167316e-6, 8.504364689338844e-7, 3.615338811217591e-8, 2.7979624348370275e-9, 1.9265020881117047e-10, 3.9798129267343656e-11], history_Etot = [-7.905264051524901, -7.910544488044353, -7.910593456968872, -7.9105943933709, -7.91059439644337, -7.910594396488422, -7.910594396488505, -7.910594396488506, -7.9105943964885075, -7.910594396488503], occupation_threshold = 1.0e-6, seed = 0xacdc10c0df224e98, runtime_ns = 0x0000000082ab7de7)