Hubbard correction (DFT+U)

In this example, we'll plot the DOS and projected DOS of Nickel Oxide with and without the Hubbard term correction.

using DFTK
using PseudoPotentialData
using Unitful
using UnitfulAtomic
using Plots

Define the geometry and pseudopotential

a = 7.9  # Nickel Oxide lattice constant in Bohr
lattice = a * [[ 1.0  0.5  0.5];
               [ 0.5  1.0  0.5];
               [ 0.5  0.5  1.0]]
pseudopotentials = PseudoFamily("dojo.nc.sr.pbe.v0_4_1.standard.upf")
Ni = ElementPsp(:Ni, pseudopotentials)
O  = ElementPsp(:O, pseudopotentials)
atoms = [Ni, O, Ni, O]
positions = [zeros(3), ones(3) / 4, ones(3) / 2, ones(3) * 3 / 4]
magnetic_moments = [2, 0, -1, 0]
4-element Vector{Int64}:
  2
  0
 -1
  0

First, we run an SCF and band computation without the Hubbard term

model = model_DFT(lattice, atoms, positions; temperature=5e-3,
                  functionals=PBE(), magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments))
bands = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands.εF > 0, bands.eigenvalues[1])
band_gap = bands.eigenvalues[1][lowest_unocc_band] - bands.eigenvalues[1][lowest_unocc_band-1]
0.08219315583617742

Then we plot the DOS and the PDOS for the relevant 3D (pseudo)atomic projector

εF = bands.εF
width = 5.0u"eV"
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands; εrange, colors=[:red, :red])
plot_pdos(bands; p, iatom=1, label="3D", colors=[:yellow, :orange], εrange)

To perform and Hubbard computation, we have to define the Hubbard manifold and associated constant.

In DFTK there are a few ways to construct the OrbitalManifold. Here, we will apply the Hubbard correction on the 3D orbital of all nickel atoms. To select all nickel atoms, we can:

  • Pass the Ni element directly.
  • Pass the :Ni symbol.
  • Pass the list of atom indices, here [1, 3].

To select the orbitals, it is recommended to use their label, such as "3D" for PseudoDojo pseudopotentials.

Note that "manifold" is the standard term used in the literature for the set of atomic orbitals used to compute the Hubbard correction, but it is not meant in the mathematical sense.

U = 10u"eV"
# Alternative:
# manifold = OrbitalManifold(:Ni, "3D")
# Alternative:
# manifold = OrbitalManifold([1, 3], "3D")
manifold = OrbitalManifold(Ni, "3D")
OrbitalManifold(Ni, "3D")

Run SCF with a DFT+U setup, notice the extra_terms keyword argument, setting up the Hubbard +U term. It is also possible to set up multiple manifolds with different U values by passing each pair as a separate entry in the Hubbard constructor (i.e. Hubbard(manifold1 => U1, manifold2 => U2, etc.)) or as two vectors (i.e. Hubbard([manifold1, manifold2, etc.], [U1, U2, etc.])).

model = model_DFT(lattice, atoms, positions; extra_terms=[Hubbard(manifold => U)],
                  functionals=PBE(), temperature=5e-3, magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments));
┌ Warning: Negative ρcore detected: -0.0006182370306135084
└ @ DFTK ~/work/DFTK.jl/DFTK.jl/src/terms/xc.jl:39
n     Energy            log10(ΔE)   log10(Δρ)   Magnet   |Magn|   Diag   Δtime 
---   ---------------   ---------   ---------   ------   ------   ----   ------
  1   -361.3854685653                    0.07    1.334    3.440    6.9    4.13s
  2   -363.2378180350        0.27       -0.21    0.014    3.624    3.2    8.53s
  3   -363.3511444518       -0.95       -0.58    0.000    3.727    3.4    3.55s
  4   -363.3890342275       -1.42       -1.18    0.000    3.716    2.6    2.43s
  5   -363.3959926428       -2.16       -1.67    0.000    3.681    2.0    2.23s
  6   -363.3973129525       -2.88       -2.04    0.000    3.656    1.5    2.49s
  7   -363.3976111855       -3.53       -2.29    0.000    3.647    2.2    2.16s
  8   -363.3976910512       -4.10       -2.62    0.000    3.647    1.4    1.92s
  9   -363.3977065431       -4.81       -2.97    0.000    3.649    2.0    2.75s
 10   -363.3977062168   +   -6.49       -2.92   -0.000    3.649    2.0    1.99s
 11   -363.3977089848       -5.56       -3.15   -0.000    3.649    1.2    1.81s
 12   -363.3977095265       -6.27       -3.16   -0.000    3.648    1.5    2.41s
 13   -363.3977095595       -7.48       -3.10   -0.000    3.648    1.0    1.80s
 14   -363.3977094355   +   -6.91       -2.88   -0.000    3.648    1.0    1.77s
 15   -363.3977074252   +   -5.70       -2.90   -0.000    3.649    2.0    2.74s
 16   -363.3977088645       -5.84       -3.17   -0.000    3.649    1.0    1.78s
 17   -363.3977098872       -5.99       -3.44    0.000    3.649    1.9    1.97s
 18   -363.3977099793       -7.04       -3.81    0.000    3.648    1.2    2.28s
 19   -363.3977100026       -7.63       -4.14    0.000    3.648    2.1    2.04s
 20   -363.3977100105       -8.10       -4.17    0.000    3.648    1.2    1.68s
 21   -363.3977099473   +   -7.20       -3.74    0.000    3.648    2.1    2.08s
 22   -363.3977100063       -7.23       -3.79   -0.000    3.648    2.0    2.67s
 23   -363.3977100140       -8.12       -3.99    0.000    3.648    1.0    1.68s
 24   -363.3977100149       -9.06       -4.11    0.000    3.648    1.0    1.66s
 25   -363.3977100157       -9.09       -4.37    0.000    3.648    1.0    1.75s
 26   -363.3977100166       -9.05       -4.39    0.000    3.648    1.0    2.20s
 27   -363.3977100164   +   -9.69       -4.35    0.000    3.648    1.0    1.68s
 28   -363.3977100169       -9.30       -4.23    0.000    3.648    1.0    1.66s
 29   -363.3977100172       -9.50       -4.76    0.000    3.648    1.0    2.27s
 30   -363.3977100174       -9.66       -4.80    0.000    3.648    1.2    1.75s
 31   -363.3977100177       -9.46       -4.76    0.000    3.648    1.1    1.67s
 32   -363.3977100178      -10.02       -5.37    0.000    3.648    1.0    1.73s
 33   -363.3977100178   +  -11.57       -5.50    0.000    3.648    2.6    2.55s
 34   -363.3977100178      -11.43       -5.49    0.000    3.648    1.0    1.70s
 35   -363.3977100178      -12.55       -5.44    0.000    3.648    1.0    1.66s
 36   -363.3977100179      -10.89       -5.65    0.000    3.648    1.0    2.24s
 37   -363.3977100179      -12.77       -5.73    0.000    3.648    1.0    1.70s
 38   -363.3977100179      -11.74       -5.94    0.000    3.648    1.0    1.66s
 39   -363.3977100179   +  -12.47       -5.96    0.000    3.648    1.2    2.31s
 40   -363.3977100179      -12.64       -6.00    0.000    3.648    1.0    1.65s
 41   -363.3977100179      -12.29       -6.22    0.000    3.648    1.0    1.65s

Run band computation

bands_hub = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands_hub.εF > 0, bands_hub.eigenvalues[1])
band_gap = bands_hub.eigenvalues[1][lowest_unocc_band] - bands_hub.eigenvalues[1][lowest_unocc_band-1]
0.11667605282942245

With the electron localization introduced by the Hubbard term, the band gap has now opened, reflecting the experimental insulating behaviour of Nickel Oxide.

εF = bands_hub.εF
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands_hub; p, colors=[:blue, :blue], εrange)
plot_pdos(bands_hub; p, iatom=1, label="3D", colors=[:green, :purple], εrange)