Hubbard correction (DFT+U)

In this example, we'll plot the DOS and projected DOS of Nickel Oxide with and without the Hubbard term correction.

using DFTK
using PseudoPotentialData
using Unitful
using UnitfulAtomic
using Plots

Define the geometry and pseudopotential

a = 7.9  # Nickel Oxide lattice constant in Bohr
lattice = a * [[ 1.0  0.5  0.5];
               [ 0.5  1.0  0.5];
               [ 0.5  0.5  1.0]]
pseudopotentials = PseudoFamily("dojo.nc.sr.pbe.v0_4_1.standard.upf")
Ni = ElementPsp(:Ni, pseudopotentials)
O  = ElementPsp(:O, pseudopotentials)
atoms = [Ni, O, Ni, O]
positions = [zeros(3), ones(3) / 4, ones(3) / 2, ones(3) * 3 / 4]
magnetic_moments = [2, 0, -1, 0]
4-element Vector{Int64}:
  2
  0
 -1
  0

First, we run an SCF and band computation without the Hubbard term

model = model_DFT(lattice, atoms, positions; temperature=5e-3,
                  functionals=PBE(), magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments))
bands = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands.εF > 0, bands.eigenvalues[1])
band_gap = bands.eigenvalues[1][lowest_unocc_band] - bands.eigenvalues[1][lowest_unocc_band-1]
0.08219258847129957

Then we plot the DOS and the PDOS for the relevant 3D (pseudo)atomic projector

εF = bands.εF
width = 5.0u"eV"
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands; εrange, colors=[:red, :red])
plot_pdos(bands; p, iatom=1, label="3D", colors=[:yellow, :orange], εrange)
Example block output

To perform and Hubbard computation, we have to define the Hubbard manifold and associated constant.

In DFTK there are a few ways to construct the OrbitalManifold. Here, we will apply the Hubbard correction on the 3D orbital of all nickel atoms. To select all nickel atoms, we can:

  • Pass the Ni element directly.
  • Pass the :Ni symbol.
  • Pass the list of atom indices, here [1, 3].

To select the orbitals, it is recommended to use their label, such as "3D" for PseudoDojo pseudopotentials.

Note that "manifold" is the standard term used in the literature for the set of atomic orbitals used to compute the Hubbard correction, but it is not meant in the mathematical sense.

U = 10u"eV"
# Alternative:
# manifold = OrbitalManifold(:Ni, "3D")
# Alternative:
# manifold = OrbitalManifold([1, 3], "3D")
manifold = OrbitalManifold(Ni, "3D")
OrbitalManifold(Ni, "3D")

Run SCF with a DFT+U setup, notice the extra_terms keyword argument, setting up the Hubbard +U term. It is also possible to set up multiple manifolds with different U values by passing each pair as a separate entry in the Hubbard constructor (i.e. Hubbard(manifold1 => U1, manifold2 => U2, etc.)) or as two vectors (i.e. Hubbard([manifold1, manifold2, etc.], [U1, U2, etc.])).

model = model_DFT(lattice, atoms, positions; extra_terms=[Hubbard(manifold => U)],
                  functionals=PBE(), temperature=5e-3, magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments));
┌ Warning: Negative ρcore detected: -0.000618237030613506
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/terms/xc.jl:39
n     Energy            log10(ΔE)   log10(Δρ)   Magnet   |Magn|   Diag   Δtime
---   ---------------   ---------   ---------   ------   ------   ----   ------
  1   -361.3873100308                    0.07    1.336    3.439    6.8    5.05s
  2   -363.2379566755        0.27       -0.21    0.014    3.624    3.1    3.51s
  3   -363.3509585401       -0.95       -0.58    0.000    3.727    3.2    2.89s
  4   -363.3890515773       -1.42       -1.18    0.000    3.717    2.6    2.41s
  5   -363.3959760313       -2.16       -1.67    0.000    3.681    2.1    2.22s
  6   -363.3973136019       -2.87       -2.04    0.000    3.656    1.5    1.89s
  7   -363.3976108350       -3.53       -2.29    0.000    3.647    2.0    2.11s
  8   -363.3976854700       -4.13       -2.55    0.000    3.646    1.4    1.90s
  9   -363.3977064982       -4.68       -2.94    0.000    3.649    2.0    2.15s
 10   -363.3977071331       -6.20       -2.96   -0.000    3.649    2.0    1.94s
 11   -363.3977089175       -5.75       -3.08   -0.000    3.649    1.0    1.77s
 12   -363.3977092250       -6.51       -3.03    0.000    3.648    1.0    1.77s
 13   -363.3977097474       -6.28       -2.99    0.000    3.648    1.1    1.78s
 14   -363.3977094071   +   -6.47       -2.84   -0.000    3.648    1.0    1.76s
 15   -363.3977089161   +   -6.31       -2.72    0.000    3.648    1.0    1.77s
 16   -363.3977081992   +   -6.14       -2.59   -0.000    3.647    1.0    1.76s
 17   -363.3977077356   +   -6.33       -2.55   -0.000    3.647    1.0    1.77s
 18   -363.3977086234       -6.05       -2.68   -0.000    3.647    1.0    1.76s
 19   -363.3977094765       -6.07       -2.86   -0.000    3.648    1.0    1.76s
 20   -363.3977094598   +   -7.78       -2.83   -0.000    3.648    1.0    1.76s
 21   -363.3977095985       -6.86       -2.84    0.000    3.648    1.0    1.77s
 22   -363.3977098813       -6.55       -3.13   -0.000    3.648    1.0    1.76s
 23   -363.3977099950       -6.94       -3.55    0.000    3.648    1.0    3.04s
 24   -363.3977100085       -7.87       -3.64    0.000    3.648    1.0    1.69s
 25   -363.3977100137       -8.28       -3.89    0.000    3.648    1.0    1.64s
 26   -363.3977100162       -8.60       -4.11    0.000    3.648    1.2    1.69s
 27   -363.3977100175       -8.89       -4.43    0.000    3.648    1.5    1.73s
 28   -363.3977100177       -9.76       -4.84    0.000    3.648    1.6    1.86s
 29   -363.3977100176   +  -10.26       -4.83    0.000    3.648    2.0    1.95s
 30   -363.3977100177       -9.97       -5.00    0.000    3.648    1.0    1.65s
 31   -363.3977100178      -10.05       -5.32    0.000    3.648    1.0    1.66s
 32   -363.3977100178      -10.70       -5.70    0.000    3.648    1.1    1.67s
 33   -363.3977100178   +  -11.18       -5.61    0.000    3.648    2.0    2.08s
 34   -363.3977100178      -11.22       -5.75    0.000    3.648    1.0    1.66s
 35   -363.3977100179      -11.32       -6.06    0.000    3.648    2.0    1.92s

Run band computation

bands_hub = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands_hub.εF > 0, bands_hub.eigenvalues[1])
band_gap = bands_hub.eigenvalues[1][lowest_unocc_band] - bands_hub.eigenvalues[1][lowest_unocc_band-1]
0.11667586135327568

With the electron localization introduced by the Hubbard term, the band gap has now opened, reflecting the experimental insulating behaviour of Nickel Oxide.

εF = bands_hub.εF
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands_hub; p, colors=[:blue, :blue], εrange)
plot_pdos(bands_hub; p, iatom=1, label="3D", colors=[:green, :purple], εrange)
Example block output