Polarizability using automatic differentiation
Simple example for computing properties using (forward-mode) automatic differentiation. For a more classical approach and more details about computing polarizabilities, see Polarizability by linear response.
using DFTK
using LinearAlgebra
using ForwardDiff
using PseudoPotentialData
# Construct PlaneWaveBasis given a particular electric field strength
# Again we take the example of a Helium atom.
function make_basis(ε::T; a=10., Ecut=30) where {T}
lattice = T(a) * I(3) # lattice is a cube of ``a`` Bohrs
# Helium at the center of the box
pseudopotentials = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")
atoms = [ElementPsp(:He, pseudopotentials)]
positions = [[1/2, 1/2, 1/2]]
model = model_DFT(lattice, atoms, positions;
functionals=[:lda_x, :lda_c_vwn],
extra_terms=[ExternalFromReal(r -> -ε * (r[1] - a/2))],
symmetries=false)
PlaneWaveBasis(model; Ecut, kgrid=[1, 1, 1]) # No k-point sampling on isolated system
end
# dipole moment of a given density (assuming the current geometry)
function dipole(basis, ρ)
@assert isdiag(basis.model.lattice)
a = basis.model.lattice[1, 1]
rr = [a * (r[1] - 1/2) for r in r_vectors(basis)]
sum(rr .* ρ) * basis.dvol
end
# Function to compute the dipole for a given field strength
function compute_dipole(ε; tol=1e-8, kwargs...)
scfres = self_consistent_field(make_basis(ε; kwargs...); tol)
dipole(scfres.basis, scfres.ρ)
end;With this in place we can compute the polarizability from finite differences (just like in the previous example):
polarizability_fd = let
ε = 0.01
(compute_dipole(ε) - compute_dipole(0.0)) / ε
end1.77355796341086We do the same thing using automatic differentiation. Under the hood this uses custom rules to implicitly differentiate through the self-consistent field fixed-point problem. This leads to a density-functional perturbation theory problem, which is automatically set up and solved in the background.
polarizability = ForwardDiff.derivative(compute_dipole, 0.0)
println()
println("Polarizability via ForwardDiff: $polarizability")
println("Polarizability via finite difference: $polarizability_fd")n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -2.770879525675 -0.52 9.0 172ms
2 -2.772063920955 -2.93 -1.32 1.0 182ms
3 -2.772083125154 -4.72 -2.47 1.0 100ms
4 -2.772083351636 -6.64 -3.19 1.0 135ms
5 -2.772083416704 -7.19 -3.98 2.0 123ms
6 -2.772083417593 -9.05 -4.40 1.0 105ms
7 -2.772083417806 -9.67 -5.66 1.0 111ms
8 -2.772083417810 -11.40 -5.85 2.0 126ms
9 -2.772083417811 -12.88 -6.18 1.0 119ms
10 -2.772083417811 -13.34 -6.81 1.0 115ms
11 -2.772083417811 -14.31 -8.17 2.0 143ms
Solving response problem
Iter Restart Krydim log10(res) avg(CG) Δtime Comment
---- ------- ------ ---------- ------- ------ ---------------
13.0 134ms Non-interacting
1 0 1 -0.60 10.0 178ms
2 0 2 -2.42 8.0 116ms
3 0 3 -3.55 6.0 111ms
4 0 4 -5.33 5.0 103ms
5 0 5 -7.17 1.0 86.9ms
6 0 6 -10.29 1.0 87.6ms
7 1 1 -7.56 13.0 216ms Restart
8 1 2 -9.07 1.0 86.5ms
13.0 120ms Final orbitals
Polarizability via ForwardDiff: 1.7725349833570154
Polarizability via finite difference: 1.77355796341086