Practical error bounds for the forces
This is a simple example showing how to compute error estimates for the forces on a ${\rm TiO}_2$ molecule, from which we can either compute asymptotically valid error bounds or increase the precision on the computation of the forces.
The strategy we follow is described with more details in [CDKL2021] and we will use in comments the density matrices framework. We will also needs operators and functions from src/scf/newton.jl
.
using DFTK
using Printf
using LinearAlgebra
using ForwardDiff
using LinearMaps
using IterativeSolvers
Setup
We setup manually the ${\rm TiO}_2$ configuration from Materials Project.
Ti = ElementPsp(:Ti; psp=load_psp("hgh/lda/ti-q4.hgh"))
O = ElementPsp(:O; psp=load_psp("hgh/lda/o-q6.hgh"))
atoms = [Ti, Ti, O, O, O, O]
positions = [[0.5, 0.5, 0.5], # Ti
[0.0, 0.0, 0.0], # Ti
[0.19542, 0.80458, 0.5], # O
[0.80458, 0.19542, 0.5], # O
[0.30458, 0.30458, 0.0], # O
[0.69542, 0.69542, 0.0]] # O
lattice = [[8.79341 0.0 0.0];
[0.0 8.79341 0.0];
[0.0 0.0 5.61098]];
We apply a small displacement to one of the $\rm Ti$ atoms to get nonzero forces.
positions[1] .+= [-0.022, 0.028, 0.035]
3-element Vector{Float64}:
0.478
0.528
0.535
We build a model with one $k$-point only, not too high Ecut_ref
and small tolerance to limit computational time. These parameters can be increased for more precise results.
model = model_DFT(lattice, atoms, positions; functionals=LDA())
kgrid = [1, 1, 1]
Ecut_ref = 35
basis_ref = PlaneWaveBasis(model; Ecut=Ecut_ref, kgrid)
tol = 1e-5;
Computations
We compute the reference solution $P_*$ from which we will compute the references forces.
scfres_ref = self_consistent_field(basis_ref; tol, callback=identity)
ψ_ref = DFTK.select_occupied_orbitals(basis_ref, scfres_ref.ψ, scfres_ref.occupation).ψ;
We compute a variational approximation of the reference solution with smaller Ecut
. ψr
, ρr
and Er
are the quantities computed with Ecut
and then extended to the reference grid.
Be careful to choose Ecut
not too close to Ecut_ref
. Note also that the current choice Ecut_ref = 35
is such that the reference solution is not converged and Ecut = 15
is such that the asymptotic regime (crucial to validate the approach) is barely established.
Ecut = 15
basis = PlaneWaveBasis(model; Ecut, kgrid)
scfres = self_consistent_field(basis; tol, callback=identity)
ψr = DFTK.transfer_blochwave(scfres.ψ, basis, basis_ref)
ρr = compute_density(basis_ref, ψr, scfres.occupation)
Er, hamr = energy_hamiltonian(basis_ref, ψr, scfres.occupation; ρ=ρr);
We then compute several quantities that we need to evaluate the error bounds.
- Compute the residual $R(P)$, and remove the virtual orbitals, as required in
src/scf/newton.jl
.
res = DFTK.compute_projected_gradient(basis_ref, ψr, scfres.occupation)
res, occ = DFTK.select_occupied_orbitals(basis_ref, res, scfres.occupation)
ψr = DFTK.select_occupied_orbitals(basis_ref, ψr, scfres.occupation).ψ;
- Compute the error $P-P_*$ on the associated orbitals $ϕ-ψ$ after aligning them: this is done by solving $\min |ϕ - ψU|$ for $U$ unitary matrix of size $N×N$ ($N$ being the number of electrons) whose solution is $U = S(S^*S)^{-1/2}$ where $S$ is the overlap matrix $ψ^*ϕ$.
function compute_error(basis, ϕ, ψ)
map(zip(ϕ, ψ)) do (ϕk, ψk)
S = ψk'ϕk
U = S*(S'S)^(-1/2)
ϕk - ψk*U
end
end
err = compute_error(basis_ref, ψr, ψ_ref);
- Compute ${\boldsymbol M}^{-1}R(P)$ with ${\boldsymbol M}^{-1}$ defined in [CDKL2021]:
P = [PreconditionerTPA(basis_ref, kpt) for kpt in basis_ref.kpoints]
map(zip(P, ψr)) do (Pk, ψk)
DFTK.precondprep!(Pk, ψk)
end
function apply_M(φk, Pk, δφnk, n)
DFTK.proj_tangent_kpt!(δφnk, φk)
δφnk = sqrt.(Pk.mean_kin[n] .+ Pk.kin) .* δφnk
DFTK.proj_tangent_kpt!(δφnk, φk)
δφnk = sqrt.(Pk.mean_kin[n] .+ Pk.kin) .* δφnk
DFTK.proj_tangent_kpt!(δφnk, φk)
end
function apply_inv_M(φk, Pk, δφnk, n)
DFTK.proj_tangent_kpt!(δφnk, φk)
op(x) = apply_M(φk, Pk, x, n)
function f_ldiv!(x, y)
x .= DFTK.proj_tangent_kpt(y, φk)
x ./= (Pk.mean_kin[n] .+ Pk.kin)
DFTK.proj_tangent_kpt!(x, φk)
end
J = LinearMap{eltype(φk)}(op, size(δφnk, 1))
δφnk = cg(J, δφnk; Pl=DFTK.FunctionPreconditioner(f_ldiv!),
verbose=false, reltol=0, abstol=1e-15)
DFTK.proj_tangent_kpt!(δφnk, φk)
end
function apply_metric(φ, P, δφ, A::Function)
map(enumerate(δφ)) do (ik, δφk)
Aδφk = similar(δφk)
φk = φ[ik]
for n = 1:size(δφk,2)
Aδφk[:,n] = A(φk, P[ik], δφk[:,n], n)
end
Aδφk
end
end
Mres = apply_metric(ψr, P, res, apply_inv_M);
We can now compute the modified residual $R_{\rm Schur}(P)$ using a Schur complement to approximate the error on low-frequencies[CDKL2021]:
\[\begin{bmatrix} (\boldsymbol Ω + \boldsymbol K)_{11} & (\boldsymbol Ω + \boldsymbol K)_{12} \\ 0 & {\boldsymbol M}_{22} \end{bmatrix} \begin{bmatrix} P_{1} - P_{*1} \\ P_{2}-P_{*2} \end{bmatrix} = \begin{bmatrix} R_{1} \\ R_{2} \end{bmatrix}.\]
- Compute the projection of the residual onto the high and low frequencies:
resLF = DFTK.transfer_blochwave(res, basis_ref, basis)
resHF = res - DFTK.transfer_blochwave(resLF, basis, basis_ref);
- Compute ${\boldsymbol M}^{-1}_{22}R_2(P)$:
e2 = apply_metric(ψr, P, resHF, apply_inv_M);
- Compute the right hand side of the Schur system:
# Rayleigh coefficients needed for `apply_Ω`
Λ = map(enumerate(ψr)) do (ik, ψk)
Hk = hamr.blocks[ik]
Hψk = Hk * ψk
ψk'Hψk
end
ΩpKe2 = DFTK.apply_Ω(e2, ψr, hamr, Λ) .+ DFTK.apply_K(basis_ref, e2, ψr, ρr, occ)
ΩpKe2 = DFTK.transfer_blochwave(ΩpKe2, basis_ref, basis)
rhs = resLF - ΩpKe2;
- Solve the Schur system to compute $R_{\rm Schur}(P)$: this is the most costly step, but inverting $\boldsymbol{Ω} + \boldsymbol{K}$ on the small space has the same cost than the full SCF cycle on the small grid.
(; ψ) = DFTK.select_occupied_orbitals(basis, scfres.ψ, scfres.occupation)
e1 = DFTK.solve_ΩplusK(basis, ψ, rhs, occ; tol).δψ
e1 = DFTK.transfer_blochwave(e1, basis, basis_ref)
res_schur = e1 + Mres;
Error estimates
We start with different estimations of the forces:
- Force from the reference solution
f_ref = compute_forces(scfres_ref)
forces = Dict("F(P_*)" => f_ref)
relerror = Dict("F(P_*)" => 0.0)
compute_relerror(f) = norm(f - f_ref) / norm(f_ref);
- Force from the variational solution and relative error without any post-processing:
f = compute_forces(scfres)
forces["F(P)"] = f
relerror["F(P)"] = compute_relerror(f);
We then try to improve $F(P)$ using the first order linearization:
\[F(P) = F(P_*) + {\rm d}F(P)·(P-P_*).\]
To this end, we use the ForwardDiff.jl
package to compute ${\rm d}F(P)$ using automatic differentiation.
function df(basis, occupation, ψ, δψ, ρ)
δρ = DFTK.compute_δρ(basis, ψ, δψ, occupation)
ForwardDiff.derivative(ε -> compute_forces(basis, ψ.+ε.*δψ, occupation; ρ=ρ+ε.*δρ), 0)
end;
- Computation of the forces by a linearization argument if we have access to the actual error $P-P_*$. Usually this is of course not the case, but this is the "best" improvement we can hope for with a linearisation, so we are aiming for this precision.
df_err = df(basis_ref, occ, ψr, DFTK.proj_tangent(err, ψr), ρr)
forces["F(P) - df(P)⋅(P-P_*)"] = f - df_err
relerror["F(P) - df(P)⋅(P-P_*)"] = compute_relerror(f - df_err);
- Computation of the forces by a linearization argument when replacing the error $P-P_*$ by the modified residual $R_{\rm Schur}(P)$. The latter quantity is computable in practice.
df_schur = df(basis_ref, occ, ψr, res_schur, ρr)
forces["F(P) - df(P)⋅Rschur(P)"] = f - df_schur
relerror["F(P) - df(P)⋅Rschur(P)"] = compute_relerror(f - df_schur);
Summary of all forces on the first atom (Ti)
for (key, value) in pairs(forces)
@printf("%30s = [%7.5f, %7.5f, %7.5f] (rel. error: %7.5f)\n",
key, (value[1])..., relerror[key])
end
F(P_*) = [1.47894, -1.25370, 0.81011] (rel. error: 0.00000)
F(P) = [1.13543, -1.01527, 0.40015] (rel. error: 0.20482)
F(P) - df(P)⋅Rschur(P) = [1.29128, -1.10183, 0.69056] (rel. error: 0.07830)
F(P) - df(P)⋅(P-P_*) = [1.50900, -1.28630, 0.86146] (rel. error: 0.08072)
Notice how close the computable expression $F(P) - {\rm d}F(P)⋅R_{\rm Schur}(P)$ is to the best linearization ansatz $F(P) - {\rm d}F(P)⋅(P-P_*)$.