Comparison of DFT solvers

We compare four different approaches for solving the DFT minimisation problem, namely a density-based SCF, a potential-based SCF, direct minimisation and Newton.

First we setup our problem

using AtomsBuilder
using DFTK
using LinearAlgebra
using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.pbesol.v0_4_1.standard.upf")
model = model_DFT(bulk(:Si); functionals=PBEsol(), pseudopotentials)
basis = PlaneWaveBasis(model; Ecut=5, kgrid=[3, 3, 3])

# Convergence we desire in the density
tol = 1e-6
1.0e-6

Density-based self-consistent field

scfres_scf = self_consistent_field(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397899562728                   -0.90    5.5   27.3ms
  2   -8.400250018371       -2.63       -1.74    1.0   18.6ms
  3   -8.400404632689       -3.81       -2.96    1.5   20.1ms
  4   -8.400427816087       -4.63       -2.96    3.0   24.1ms
  5   -8.400427932567       -6.93       -3.04    1.0   45.3ms
  6   -8.400428149651       -6.66       -4.71    1.0   19.4ms
  7   -8.400428155721       -8.22       -4.39    2.8   24.7ms
  8   -8.400428156256       -9.27       -5.49    1.0   19.2ms
  9   -8.400428156274      -10.72       -5.93    2.0   22.1ms
 10   -8.400428156277      -11.65       -6.78    2.0   22.3ms

Potential-based SCF

scfres_scfv = DFTK.scf_potential_mixing(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   α      Diag   Δtime
---   ---------------   ---------   ---------   ----   ----   ------
  1   -8.397855001034                   -0.90           5.2   27.4ms
  2   -8.400385108564       -2.60       -1.79   0.80    2.0   18.7ms
  3   -8.400422974787       -4.42       -3.02   0.80    1.0   15.6ms
  4   -8.400428122361       -5.29       -3.43   0.80    2.5   20.2ms
  5   -8.400428154014       -7.50       -4.65   0.80    1.0   15.9ms
  6   -8.400428156244       -8.65       -6.05   0.80    2.2   19.8ms

Direct minimization

scfres_dm = direct_minimization(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   +0.736466371039                   -1.02   64.5ms
  2   -2.008508186068        0.44       -0.66   29.0ms
  3   -4.048867996341        0.31       -0.43   39.3ms
  4   -5.129753115541        0.03       -0.51   39.3ms
  5   -6.921516484543        0.25       -0.63   39.3ms
  6   -7.765720205019       -0.07       -0.98   39.3ms
  7   -8.025591123676       -0.59       -1.40   28.8ms
  8   -8.197351838844       -0.77       -1.78   28.7ms
  9   -8.246309292700       -1.31       -1.73   36.6ms
 10   -8.310890985071       -1.19       -1.91   29.0ms
 11   -8.341148800847       -1.52       -2.01   29.5ms
 12   -8.366979149859       -1.59       -2.28   29.2ms
 13   -8.381481944099       -1.84       -2.24   29.0ms
 14   -8.388802789566       -2.14       -2.46   28.9ms
 15   -8.394931093548       -2.21       -2.74   29.0ms
 16   -8.398215400385       -2.48       -2.84   35.6ms
 17   -8.399393980607       -2.93       -3.17   29.0ms
 18   -8.399894263973       -3.30       -3.47   28.9ms
 19   -8.400154298128       -3.58       -3.52   29.0ms
 20   -8.400343914354       -3.72       -3.82   29.1ms
 21   -8.400366547956       -4.65       -4.01   28.9ms
 22   -8.400407990149       -4.38       -4.38   35.3ms
 23   -8.400415293739       -5.14       -4.05   29.1ms
 24   -8.400423850823       -5.07       -4.48   29.1ms
 25   -8.400425990602       -5.67       -4.50   29.0ms
 26   -8.400427200852       -5.92       -4.69   29.1ms
 27   -8.400427804216       -6.22       -4.63   35.0ms
 28   -8.400428037808       -6.63       -5.23   29.0ms
 29   -8.400428079330       -7.38       -5.04   29.0ms
 30   -8.400428118618       -7.41       -5.31   29.0ms
 31   -8.400428134795       -7.79       -5.34   34.1ms
 32   -8.400428147613       -7.89       -5.46   28.9ms
 33   -8.400428152149       -8.34       -5.79   33.7ms
 34   -8.400428154696       -8.59       -5.77   29.9ms
 35   -8.400428155701       -9.00       -6.08   35.0ms

Newton algorithm

Start not too far from the solution to ensure convergence: We run first a very crude SCF to get close and then switch to Newton.

scfres_start = self_consistent_field(basis; tol=0.5);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397770640602                   -0.90    5.0   29.1ms

Remove the virtual orbitals (which Newton cannot treat yet)

ψ = DFTK.select_occupied_orbitals(basis, scfres_start.ψ, scfres_start.occupation).ψ
scfres_newton = newton(basis, ψ; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   -8.400427955926                   -1.78    559ms
  2   -8.400428156277       -6.70       -4.00    383ms
  3   -8.400428156277      -14.45       -7.75    125ms

Comparison of results

println("|ρ_newton - ρ_scf|  = ", norm(scfres_newton.ρ - scfres_scf.ρ))
println("|ρ_newton - ρ_scfv| = ", norm(scfres_newton.ρ - scfres_scfv.ρ))
println("|ρ_newton - ρ_dm|   = ", norm(scfres_newton.ρ - scfres_dm.ρ))
|ρ_newton - ρ_scf|  = 5.29491732327665e-8
|ρ_newton - ρ_scfv| = 4.7724894625198865e-6
|ρ_newton - ρ_dm|   = 1.1358496482929661e-6