Comparison of DFT solvers

We compare four different approaches for solving the DFT minimisation problem, namely a density-based SCF, a potential-based SCF, direct minimisation and Newton.

First we setup our problem

using AtomsBuilder
using DFTK
using LinearAlgebra
using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.pbesol.v0_4_1.standard.upf")
model = model_DFT(bulk(:Si); functionals=PBEsol(), pseudopotentials)
basis = PlaneWaveBasis(model; Ecut=5, kgrid=[3, 3, 3])

# Convergence we desire in the density
tol = 1e-6
1.0e-6

Density-based self-consistent field

scfres_scf = self_consistent_field(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397792470904                   -0.90    4.8   25.5ms
  2   -8.400242797458       -2.61       -1.73    1.0   27.5ms
  3   -8.400401431881       -3.80       -2.91    1.5   19.6ms
  4   -8.400427755461       -4.58       -2.92    3.0   24.0ms
  5   -8.400427963120       -6.68       -3.06    1.0   18.6ms
  6   -8.400428150325       -6.73       -4.85    1.0   24.2ms
  7   -8.400428155914       -8.25       -4.47    3.2   26.0ms
  8   -8.400428156263       -9.46       -5.49    1.0   19.3ms
  9   -8.400428156275      -10.91       -6.25    1.5   20.4ms

Potential-based SCF

scfres_scfv = DFTK.scf_potential_mixing(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   α      Diag   Δtime
---   ---------------   ---------   ---------   ----   ----   ------
  1   -8.397757239765                   -0.89           4.8   25.6ms
  2   -8.400366046872       -2.58       -1.77   0.80    2.2   18.9ms
  3   -8.400419674706       -4.27       -2.95   0.80    1.0   15.6ms
  4   -8.400428080287       -5.08       -3.27   0.80    2.8   20.1ms
  5   -8.400428149975       -7.16       -4.30   0.80    1.0   15.8ms
  6   -8.400428156065       -8.22       -5.09   0.80    2.2   24.7ms
  7   -8.400428156273       -9.68       -6.22   0.80    2.5   19.9ms

Direct minimization

scfres_dm = direct_minimization(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   +0.869799203843                   -1.06   51.5ms
  2   -1.719057510066        0.41       -0.66   28.9ms
  3   -4.053795415518        0.37       -0.40   44.5ms
  4   -5.080269931408        0.01       -0.51   39.2ms
  5   -7.098377550961        0.30       -0.55   39.3ms
  6   -7.846156992087       -0.13       -1.07   43.7ms
  7   -8.136620411841       -0.54       -1.31   29.0ms
  8   -8.244006853318       -0.97       -1.57   29.0ms
  9   -8.307607237130       -1.20       -1.70   33.9ms
 10   -8.340882672324       -1.48       -2.01   29.1ms
 11   -8.364561858459       -1.63       -2.17   29.0ms
 12   -8.379829315697       -1.82       -2.24   29.0ms
 13   -8.388949950540       -2.04       -2.12   29.0ms
 14   -8.395551716420       -2.18       -2.64   33.6ms
 15   -8.398318838254       -2.56       -2.40   29.0ms
 16   -8.399790302132       -2.83       -2.74   29.0ms
 17   -8.400149247073       -3.44       -2.81   28.9ms
 18   -8.400332887340       -3.74       -3.38   33.9ms
 19   -8.400378808694       -4.34       -3.21   29.0ms
 20   -8.400414242477       -4.45       -3.66   29.0ms
 21   -8.400419425655       -5.29       -3.62   29.0ms
 22   -8.400425981403       -5.18       -4.08   33.5ms
 23   -8.400426982109       -6.00       -4.12   29.1ms
 24   -8.400427771711       -6.10       -4.82   29.0ms
 25   -8.400427914308       -6.85       -4.47   29.0ms
 26   -8.400428062717       -6.83       -5.36   34.3ms
 27   -8.400428092584       -7.52       -4.68   29.7ms
 28   -8.400428141765       -7.31       -5.16   29.3ms
 29   -8.400428146715       -8.31       -5.23   28.9ms
 30   -8.400428153637       -8.16       -5.71   29.0ms
 31   -8.400428153641      -11.41       -5.74   33.8ms
 32   -8.400428155477       -8.74       -6.40   29.1ms

Newton algorithm

Start not too far from the solution to ensure convergence: We run first a very crude SCF to get close and then switch to Newton.

scfres_start = self_consistent_field(basis; tol=0.5);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397845583315                   -0.90    5.0   25.9ms

Remove the virtual orbitals (which Newton cannot treat yet)

ψ = DFTK.select_occupied_orbitals(basis, scfres_start.ψ, scfres_start.occupation).ψ
scfres_newton = newton(basis, ψ; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   -8.400427979916                   -1.79    536ms
  2   -8.400428156277       -6.75       -4.03    370ms
  3   -8.400428156277      -14.75       -7.81    123ms

Comparison of results

println("|ρ_newton - ρ_scf|  = ", norm(scfres_newton.ρ - scfres_scf.ρ))
println("|ρ_newton - ρ_scfv| = ", norm(scfres_newton.ρ - scfres_scfv.ρ))
println("|ρ_newton - ρ_dm|   = ", norm(scfres_newton.ρ - scfres_dm.ρ))
|ρ_newton - ρ_scf|  = 1.6325355518889146e-6
|ρ_newton - ρ_scfv| = 5.73616892516896e-7
|ρ_newton - ρ_dm|   = 3.2633679921662835e-6