Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73104066971                   -0.88   11.0    338ms
  2   -36.41915499678   +   -0.51       -1.26    1.0   89.6ms
  3   +120.0165312252   +    2.19        0.04   17.0    334ms
  4   -32.67490232501        2.18       -0.67   10.0    279ms
  5   -30.46012523345   +    0.35       -0.64    5.0    174ms
  6   -34.27772509235        0.58       -0.81    5.0    164ms
  7   -36.63193601652        0.37       -1.45    4.0    156ms
  8   -36.70848927710       -1.12       -1.64    2.0    107ms
  9   -36.73789523093       -1.53       -1.96    2.0    121ms
 10   -36.74075382940       -2.54       -2.06    3.0    129ms
 11   -36.73864753409   +   -2.68       -2.08    2.0    108ms
 12   -36.74048612583       -2.74       -2.26    1.0   91.2ms
 13   -36.74059293731       -3.97       -2.33    1.0   94.5ms
 14   -36.74182463996       -2.91       -2.51    1.0   94.3ms
 15   -36.74163159031   +   -3.71       -2.49    1.0   92.1ms
 16   -36.70992472228   +   -1.50       -1.80    3.0    144ms
 17   -36.74015334767       -1.52       -2.37    4.0    153ms
 18   -36.74238805595       -2.65       -2.78    2.0    110ms
 19   -36.73970324761   +   -2.57       -2.33    3.0    136ms
 20   -36.74245433018       -2.56       -3.06    3.0    131ms
 21   -36.74247372796       -4.71       -3.03    2.0    128ms
 22   -36.74250563735       -4.50       -3.46    2.0    103ms
 23   -36.74250989020       -5.37       -3.67    3.0    129ms
 24   -36.74251351495       -5.44       -3.74    2.0    125ms
 25   -36.74251426271       -6.13       -3.97    1.0   95.2ms
 26   -36.74251469943       -6.36       -4.29    2.0    110ms
 27   -36.74251475170       -7.28       -4.62    2.0    101ms
 28   -36.74251466724   +   -7.07       -4.50    3.0    156ms
 29   -36.74251468541       -7.74       -4.56    3.0    134ms
 30   -36.74251475946       -7.13       -4.96    2.0    104ms
 31   -36.74251463715   +   -6.91       -4.49    3.0    136ms
 32   -36.74251477287       -6.87       -5.53    3.0    131ms
 33   -36.74251477271   +   -9.78       -5.49    3.0    137ms
 34   -36.74251476692   +   -8.24       -5.05    3.0    137ms
 35   -36.74251476528   +   -8.79       -5.10    3.0    136ms
 36   -36.74251477102       -8.24       -5.32    3.0    147ms
 37   -36.74251477296       -8.71       -5.92    2.0    107ms
 38   -36.74251477299      -10.58       -6.09    3.0    118ms
 39   -36.74251477301      -10.62       -6.30    2.0    120ms
 40   -36.74251477303      -10.69       -6.57    3.0    137ms
 41   -36.74251477303   +  -11.74       -6.51    2.0    100ms
 42   -36.74251477304      -11.14       -6.81    2.0    110ms
 43   -36.74251477302   +  -10.69       -6.38    3.0    134ms
 44   -36.74251477304      -10.71       -6.83    3.0    162ms
 45   -36.74251477304      -11.87       -7.34    2.0    106ms
 46   -36.74251477304      -13.67       -7.33    2.0    128ms
 47   -36.74251477304   +  -12.07       -7.02    3.0    133ms
 48   -36.74251477304      -12.16       -7.26    3.0    134ms
 49   -36.74251477304      -12.64       -8.07    2.0    103ms
 50   -36.74251477304   +  -13.85       -8.11    3.0    142ms
 51   -36.74251477304   +    -Inf       -7.88    2.0    121ms
 52   -36.74251477304   +    -Inf       -7.93    2.0    117ms
 53   -36.74251477304      -14.15       -8.13    3.0    277ms
 54   -36.74251477304      -14.15       -8.63    2.0    725ms
 55   -36.74251477304   +  -13.85       -8.53    3.0    147ms
 56   -36.74251477304   +    -Inf       -8.02    3.0    145ms
 57   -36.74251477304   +    -Inf       -8.91    3.0    135ms
 58   -36.74251477304   +    -Inf       -9.08    3.0    118ms
 59   -36.74251477304   +    -Inf       -9.30    2.0    120ms
 60   -36.74251477304      -13.85       -9.55    2.0    125ms
 61   -36.74251477304   +    -Inf       -9.65    2.0    149ms
 62   -36.74251477304   +  -14.15       -9.31    3.0    150ms
 63   -36.74251477304      -14.15       -9.57    2.0    120ms
 64   -36.74251477304   +  -14.15       -9.93    2.0    110ms
 65   -36.74251477304      -14.15       -9.93    2.0    118ms
 66   -36.74251477304   +    -Inf      -10.51    2.0    102ms
 67   -36.74251477304   +  -13.85      -10.39    3.0    146ms
 68   -36.74251477304      -13.85       -9.84    3.0    142ms
 69   -36.74251477304   +  -13.85      -10.93    3.0    132ms
 70   -36.74251477304      -14.15      -11.03    2.0    129ms
 71   -36.74251477304      -14.15      -10.72    3.0    126ms
 72   -36.74251477304      -14.15      -10.91    3.0    135ms
 73   -36.74251477304   +  -14.15      -11.11    2.0    110ms
 74   -36.74251477304   +    -Inf      -11.22    2.0    107ms
 75   -36.74251477304   +  -13.85      -11.19    2.0    110ms
 76   -36.74251477304   +    -Inf      -11.58    2.0    106ms
 77   -36.74251477304      -13.85      -11.43    3.0    130ms
 78   -36.74251477304   +  -13.85      -12.17    2.0    109ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73367121135                   -0.88   11.0    369ms
  2   -36.74024080701       -2.18       -1.36    1.0   87.5ms
  3   -36.74159184267       -2.87       -1.79    3.0    129ms
  4   -36.74239357136       -3.10       -2.24    1.0   91.3ms
  5   -36.74244095277       -4.32       -2.63    6.0    118ms
  6   -36.74244562308       -5.33       -2.45    4.0    131ms
  7   -36.74251104887       -4.18       -3.36    1.0   93.0ms
  8   -36.74251375047       -5.57       -3.49    3.0    141ms
  9   -36.74251394215       -6.72       -3.55    1.0   94.3ms
 10   -36.74251449270       -6.26       -3.90    1.0   95.3ms
 11   -36.74251467358       -6.74       -4.41    1.0   97.3ms
 12   -36.74251477100       -7.01       -4.84    3.0    132ms
 13   -36.74251477254       -8.81       -5.29    6.0    130ms
 14   -36.74251477284       -9.53       -5.48    2.0    130ms
 15   -36.74251477301       -9.77       -6.00    1.0   96.7ms
 16   -36.74251477300   +  -11.15       -6.07    3.0    129ms
 17   -36.74251477304      -10.46       -6.61    1.0   96.6ms
 18   -36.74251477304   +  -12.50       -6.85    3.0    139ms
 19   -36.74251477304      -12.15       -7.24    2.0    102ms
 20   -36.74251477304      -13.37       -7.64    3.0    141ms
 21   -36.74251477304      -13.67       -8.08    2.0    109ms
 22   -36.74251477304   +    -Inf       -8.36    4.0    137ms
 23   -36.74251477304   +    -Inf       -8.63    5.0    117ms
 24   -36.74251477304   +  -13.85       -8.98    2.0    105ms
 25   -36.74251477304   +    -Inf       -9.20    2.0    129ms
 26   -36.74251477304      -14.15       -9.35    1.0   96.3ms
 27   -36.74251477304      -13.85       -9.68    1.0   96.3ms
 28   -36.74251477304   +  -14.15       -9.81    2.0    103ms
 29   -36.74251477304   +  -14.15      -10.32    2.0    111ms
 30   -36.74251477304   +  -13.85      -10.24    3.0    142ms
 31   -36.74251477304      -13.67      -10.27    1.0   96.2ms
 32   -36.74251477304   +    -Inf      -10.29    1.0   96.0ms
 33   -36.74251477304   +    -Inf      -10.43    1.0   96.0ms
 34   -36.74251477304   +  -13.85      -10.41    1.0   96.0ms
 35   -36.74251477304      -14.15      -10.43    1.0   93.1ms
 36   -36.74251477304      -14.15      -10.44    1.0   95.8ms
 37   -36.74251477304   +  -13.85      -10.46    1.0   96.1ms
 38   -36.74251477304      -13.85      -10.48    1.0   96.0ms
 39   -36.74251477304   +  -13.85      -10.50    1.0   93.1ms
 40   -36.74251477304      -13.85      -10.55    1.0    120ms
 41   -36.74251477304   +  -14.15      -11.16    1.0   95.7ms
 42   -36.74251477304   +  -14.15      -11.32    5.0    140ms
 43   -36.74251477304   +    -Inf      -11.56    2.0    112ms
 44   -36.74251477304   +    -Inf      -11.90    2.0    129ms
 45   -36.74251477304      -13.85      -12.15    1.0   96.0ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024489068379445

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421120628093

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723583891357821

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).