Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73111555024                   -0.88   12.0    349ms
  2   -36.70804713707   +   -1.64       -1.57    1.0   88.7ms
  3   +0.208959247089   +    1.57       -0.29    6.0    203ms
  4   -36.51943731457        1.57       -1.08    6.0    196ms
  5   -36.72709433511       -0.68       -1.75    3.0    137ms
  6   -35.87754072144   +   -0.07       -1.10    4.0    146ms
  7   -36.69278085155       -0.09       -1.64    3.0    136ms
  8   -36.74165129713       -1.31       -2.24    2.0    106ms
  9   -36.73826396914   +   -2.47       -1.96    3.0    146ms
 10   -36.74010658199       -2.73       -2.12    2.0    119ms
 11   -36.74194787654       -2.73       -2.51    2.0    119ms
 12   -36.74237879980       -3.37       -2.82    2.0    102ms
 13   -36.74246153234       -4.08       -3.00    2.0    111ms
 14   -36.74246886037       -5.14       -3.21    4.0    128ms
 15   -36.74246811523   +   -6.13       -3.34    1.0   94.4ms
 16   -36.74217407637   +   -3.53       -2.80    3.0    149ms
 17   -36.74241699490       -3.61       -3.14    3.0    135ms
 18   -36.74238645916   +   -4.52       -3.05    3.0    144ms
 19   -36.74247851648       -4.04       -3.58    2.0    122ms
 20   -36.74248046017       -5.71       -4.21    2.0    116ms
 21   -36.74248029967   +   -6.79       -4.09    3.0    145ms
 22   -36.74248049206       -6.72       -4.20    2.0    113ms
 23   -36.74248064988       -6.80       -4.64    1.0   94.5ms
 24   -36.74248020900   +   -6.36       -4.18    4.0    152ms
 25   -36.74248060795       -6.40       -4.61    2.0    119ms
 26   -36.74248066324       -7.26       -4.96    2.0    125ms
 27   -36.74248067226       -8.04       -5.39    2.0    133ms
 28   -36.74248066527   +   -8.16       -5.09    3.0    136ms
 29   -36.74248066295   +   -8.63       -5.06    3.0    141ms
 30   -36.74248067172       -8.06       -5.39    3.0    125ms
 31   -36.74248067258       -9.07       -5.84    2.0    116ms
 32   -36.74248067266      -10.09       -6.16    2.0    127ms
 33   -36.74248067266      -11.71       -6.37    1.0   98.5ms
 34   -36.74248067268      -10.92       -6.63    2.0    104ms
 35   -36.74248067268      -11.43       -6.65    3.0    135ms
 36   -36.74248067268   +  -11.27       -6.57    2.0    117ms
 37   -36.74248067268      -11.15       -7.26    2.0    110ms
 38   -36.74248067268      -13.19       -7.53    3.0    144ms
 39   -36.74248067268   +  -12.03       -7.04    3.0    140ms
 40   -36.74248067268      -12.07       -7.52    3.0    136ms
 41   -36.74248067268      -13.25       -7.61    2.0    126ms
 42   -36.74248067268      -13.19       -8.27    2.0    110ms
 43   -36.74248067268   +  -13.85       -8.07    3.0    149ms
 44   -36.74248067268      -13.85       -8.24    3.0    128ms
 45   -36.74248067268   +  -14.15       -8.68    2.0    108ms
 46   -36.74248067268      -14.15       -8.80    2.0    128ms
 47   -36.74248067268   +    -Inf       -8.87    2.0    124ms
 48   -36.74248067268   +    -Inf       -9.28    2.0    104ms
 49   -36.74248067268   +    -Inf       -8.81    3.0    144ms
 50   -36.74248067268   +    -Inf       -9.60    3.0    137ms
 51   -36.74248067268      -13.85       -9.50    3.0    134ms
 52   -36.74248067268   +  -13.85       -9.61    3.0    135ms
 53   -36.74248067268   +  -14.15       -9.75    2.0    115ms
 54   -36.74248067268      -14.15       -9.72    3.0    127ms
 55   -36.74248067268   +    -Inf      -10.02    2.0    115ms
 56   -36.74248067268   +    -Inf       -9.91    3.0    134ms
 57   -36.74248067268   +    -Inf      -10.67    2.0    114ms
 58   -36.74248067268      -13.85      -10.81    3.0    144ms
 59   -36.74248067268   +  -13.67      -10.81    2.0    115ms
 60   -36.74248067268      -14.15      -11.10    1.0   95.4ms
 61   -36.74248067268   +    -Inf      -11.21    3.0    128ms
 62   -36.74248067268   +    -Inf      -11.50    2.0    115ms
 63   -36.74248067268   +    -Inf      -11.04    3.0    138ms
 64   -36.74248067268   +    -Inf      -11.89    3.0    145ms
 65   -36.74248067268   +    -Inf      -11.83    3.0    144ms
 66   -36.74248067268   +    -Inf      -11.63    2.0    122ms
 67   -36.74248067268   +    -Inf      -11.65    3.0    142ms
 68   -36.74248067268   +  -13.85      -12.18    2.0    109ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73400019927                   -0.88   12.0    357ms
  2   -36.74006532773       -2.22       -1.36    1.0   91.3ms
  3   -36.74048891070       -3.37       -1.82    6.0    129ms
  4   -36.74209168689       -2.80       -2.14    2.0    104ms
  5   -36.74229934395       -3.68       -2.62    2.0    123ms
  6   -36.74234643559       -4.33       -2.56    2.0    127ms
  7   -36.74243812320       -4.04       -2.84    1.0   98.6ms
  8   -36.74246917657       -4.51       -3.36    2.0    104ms
  9   -36.74247914588       -5.00       -3.52    2.0    133ms
 10   -36.74248039973       -5.90       -3.93    1.0   94.8ms
 11   -36.74248055870       -6.80       -4.28    4.0    116ms
 12   -36.74248042255   +   -6.87       -4.31    3.0    140ms
 13   -36.74248067176       -6.60       -5.06    2.0    116ms
 14   -36.74248067122   +   -9.27       -5.36    4.0    144ms
 15   -36.74248067261       -8.86       -5.64    2.0    135ms
 16   -36.74248067265      -10.36       -6.00    2.0    117ms
 17   -36.74248067268      -10.58       -6.38    1.0   94.7ms
 18   -36.74248067268      -11.20       -6.66    2.0    133ms
 19   -36.74248067268      -12.01       -7.18    1.0   94.8ms
 20   -36.74248067268   +  -13.45       -7.36    3.0    149ms
 21   -36.74248067268      -13.19       -7.64    2.0    106ms
 22   -36.74248067268      -13.67       -8.14    2.0    135ms
 23   -36.74248067268   +  -14.15       -8.47    2.0    103ms
 24   -36.74248067268      -14.15       -8.53    3.0    141ms
 25   -36.74248067268   +    -Inf       -9.06    1.0   96.2ms
 26   -36.74248067268   +  -14.15       -9.27    3.0    136ms
 27   -36.74248067268      -13.67       -9.62    2.0    130ms
 28   -36.74248067268   +  -13.67      -10.15    2.0    117ms
 29   -36.74248067268      -13.67      -10.34    2.0    130ms
 30   -36.74248067268   +  -13.67      -10.89    2.0    109ms
 31   -36.74248067268   +    -Inf      -10.84    3.0    145ms
 32   -36.74248067268      -13.67      -11.13    1.0   95.0ms
 33   -36.74248067268   +  -13.85      -11.85    2.0    115ms
 34   -36.74248067268   +  -14.15      -11.76    3.0    144ms
 35   -36.74248067268      -14.15      -12.17    1.0    101ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898019606

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113651325

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723598093706142

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).