Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73155056969                   -0.88   12.0    325ms
  2   -36.67338466883   +   -1.24       -1.42    1.0   83.9ms
  3   +16.26415212675   +    1.72       -0.20    7.0    208ms
  4   -36.03120079721        1.72       -0.94    6.0    210ms
  5   -35.86413343355   +   -0.78       -1.00    3.0    143ms
  6   -35.06615587721   +   -0.10       -0.95    4.0    147ms
  7   -36.70369754410        0.21       -1.62    3.0    138ms
  8   -36.74017603184       -1.44       -2.01    2.0    103ms
  9   -36.74071961406       -3.26       -2.18    2.0    107ms
 10   -36.74105839545       -3.47       -2.06    2.0    108ms
 11   -36.74183524317       -3.11       -2.43    1.0   92.3ms
 12   -36.74196029721       -3.90       -2.46    2.0    102ms
 13   -36.74233446949       -3.43       -2.77    1.0   94.0ms
 14   -36.74235968602       -4.60       -2.70    2.0    123ms
 15   -36.74127107102   +   -2.96       -2.51    3.0    134ms
 16   -36.74240727431       -2.94       -3.03    3.0    133ms
 17   -36.74214912616   +   -3.59       -2.72    2.0    118ms
 18   -36.74235138290       -3.69       -2.99    2.0    115ms
 19   -36.74247044387       -3.92       -3.50    2.0    111ms
 20   -36.74247940518       -5.05       -3.83    2.0    145ms
 21   -36.74247977542       -6.43       -4.03    2.0    101ms
 22   -36.74248050440       -6.14       -4.17    2.0    123ms
 23   -36.74247957746   +   -6.03       -3.98    2.0    109ms
 24   -36.74248061887       -5.98       -4.59    2.0    103ms
 25   -36.74248065472       -7.45       -4.71    3.0    124ms
 26   -36.74248066715       -7.91       -4.92    1.0   93.4ms
 27   -36.74248064807   +   -7.72       -4.79    2.0    126ms
 28   -36.74248065572       -8.12       -4.73    2.0    120ms
 29   -36.74248066694       -7.95       -5.15    2.0    107ms
 30   -36.74248067209       -8.29       -5.42    1.0   99.0ms
 31   -36.74248066922   +   -8.54       -5.24    3.0    125ms
 32   -36.74248067263       -8.47       -5.76    2.0    106ms
 33   -36.74248067083   +   -8.75       -5.41    3.0    135ms
 34   -36.74248067259       -8.75       -5.77    3.0    133ms
 35   -36.74248067264      -10.37       -6.12    1.0   93.5ms
 36   -36.74248067265      -10.77       -6.21    2.0    105ms
 37   -36.74248067267      -10.89       -6.25    2.0    109ms
 38   -36.74248067268      -10.81       -6.70    1.0   93.1ms
 39   -36.74248067267   +  -11.11       -6.50    3.0    137ms
 40   -36.74248067267      -11.93       -6.49    3.0    135ms
 41   -36.74248067266   +  -10.87       -6.38    3.0    135ms
 42   -36.74248067268      -10.68       -7.31    2.0    109ms
 43   -36.74248067268   +  -12.57       -7.23    3.0    152ms
 44   -36.74248067268      -12.38       -7.83    2.0    106ms
 45   -36.74248067268   +  -13.15       -7.60    3.0    142ms
 46   -36.74248067268      -13.55       -7.73    3.0    134ms
 47   -36.74248067268      -13.37       -8.27    2.0    124ms
 48   -36.74248067268      -14.15       -8.22    2.0    119ms
 49   -36.74248067268   +  -14.15       -8.39    2.0    118ms
 50   -36.74248067268   +    -Inf       -8.49    2.0    109ms
 51   -36.74248067268      -14.15       -8.66    1.0   90.4ms
 52   -36.74248067268   +  -13.85       -8.93    2.0    126ms
 53   -36.74248067268   +  -14.15       -9.06    2.0    109ms
 54   -36.74248067268      -14.15       -9.14    2.0    109ms
 55   -36.74248067268      -13.85       -9.36    1.0   93.6ms
 56   -36.74248067268   +    -Inf       -9.54    2.0    132ms
 57   -36.74248067268   +    -Inf      -10.39    2.0    104ms
 58   -36.74248067268   +    -Inf       -9.59    4.0    176ms
 59   -36.74248067268   +    -Inf      -10.39    4.0    160ms
 60   -36.74248067268   +  -13.85      -10.64    2.0    110ms
 61   -36.74248067268   +    -Inf       -9.94    4.0    170ms
 62   -36.74248067268   +    -Inf      -10.56    3.0    141ms
 63   -36.74248067268      -13.85      -10.77    2.0    110ms
 64   -36.74248067268   +    -Inf      -11.00    1.0    111ms
 65   -36.74248067268   +  -14.15      -11.23    2.0   97.4ms
 66   -36.74248067268   +    -Inf      -11.39    2.0    108ms
 67   -36.74248067268      -14.15      -10.39    4.0    170ms
 68   -36.74248067268   +    -Inf      -11.27    4.0    160ms
 69   -36.74248067268   +  -13.85      -11.94    2.0    107ms
 70   -36.74248067268      -13.67      -11.67    3.0    258ms
 71   -36.74248067268   +  -14.15      -11.80    3.0    746ms
 72   -36.74248067268   +    -Inf      -11.87    2.0    119ms
 73   -36.74248067268   +    -Inf      -12.06    2.0    112ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73364764364                   -0.88   12.0    345ms
  2   -36.74001577941       -2.20       -1.37    1.0   91.1ms
  3   -36.74072148360       -3.15       -1.85    3.0    114ms
  4   -36.74212138590       -2.85       -2.14    5.0    131ms
  5   -36.74232711252       -3.69       -2.72    2.0    126ms
  6   -36.74228107071   +   -4.34       -2.62    3.0    149ms
  7   -36.74244488198       -3.79       -2.91    1.0   89.5ms
  8   -36.74245356864       -5.06       -3.24    2.0    105ms
  9   -36.74247763595       -4.62       -3.59    2.0    124ms
 10   -36.74248062749       -5.52       -4.03    2.0   96.5ms
 11   -36.74248065075       -7.63       -4.47    4.0    124ms
 12   -36.74248067081       -7.70       -4.83    3.0    125ms
 13   -36.74248067200       -8.92       -5.32    2.0    124ms
 14   -36.74248067200      -11.76       -5.54    3.0    111ms
 15   -36.74248067258       -9.24       -5.89    2.0    125ms
 16   -36.74248067267      -10.01       -6.32    2.0    101ms
 17   -36.74248067268      -11.27       -6.58    2.0    128ms
 18   -36.74248067268      -11.59       -6.95    2.0    126ms
 19   -36.74248067268      -12.43       -7.32    1.0   96.4ms
 20   -36.74248067268      -13.19       -7.58    4.0    135ms
 21   -36.74248067268      -13.55       -7.90    3.0    109ms
 22   -36.74248067268   +    -Inf       -8.19    3.0    134ms
 23   -36.74248067268      -13.85       -8.32    1.0   92.7ms
 24   -36.74248067268   +    -Inf       -8.73    2.0    104ms
 25   -36.74248067268   +    -Inf       -9.16    2.0    129ms
 26   -36.74248067268      -14.15       -9.45    4.0    111ms
 27   -36.74248067268   +  -14.15       -9.61    2.0    120ms
 28   -36.74248067268   +    -Inf      -10.02    2.0    111ms
 29   -36.74248067268   +  -13.85      -10.14    3.0    133ms
 30   -36.74248067268      -13.85      -10.42    1.0   92.4ms
 31   -36.74248067268   +  -13.85      -10.57    3.0    122ms
 32   -36.74248067268      -13.85      -10.94    1.0   96.0ms
 33   -36.74248067268   +    -Inf      -11.30    2.0    129ms
 34   -36.74248067268   +    -Inf      -11.54    2.0    105ms
 35   -36.74248067268   +    -Inf      -12.05    1.0   96.0ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898037906

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113843555

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723580312349016

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).