Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime 
---   ---------------   ---------   ---------   ----   ------
  1   -36.73301621213                   -0.88   12.0    1.34s
  2   -36.33731195137   +   -0.40       -1.22    1.0    247ms
  3   +130.4090063397   +    2.22        0.06   17.0    405ms
  4   -30.45218072249        2.21       -0.60   10.0    331ms
  5   -33.89108219820        0.54       -0.81    4.0    184ms
  6   -30.98609835876   +    0.46       -0.66    5.0    201ms
  7   -36.73992501035        0.76       -1.79    3.0    160ms
  8   -36.73648158798   +   -2.46       -1.81    1.0   96.8ms
  9   -36.74126555853       -2.32       -2.08    1.0    102ms
 10   -36.74187892285       -3.21       -2.19    2.0    134ms
 11   -36.74115420441   +   -3.14       -2.21    1.0    103ms
 12   -36.74192649933       -3.11       -2.44    1.0   99.1ms
 13   -36.74101029843   +   -3.04       -2.34    2.0    120ms
 14   -36.74194134683       -3.03       -2.55    1.0    103ms
 15   -36.74101287636   +   -3.03       -2.45    2.0    124ms
 16   -36.71963785322   +   -1.67       -1.89    4.0    167ms
 17   -36.74225635321       -1.65       -2.76    3.0    156ms
 18   -36.74191288452   +   -3.46       -2.66    3.0    144ms
 19   -36.74233337472       -3.38       -2.94    3.0    140ms
 20   -36.74234796007       -4.84       -2.92    2.0    137ms
 21   -36.74247541968       -3.89       -3.34    2.0    121ms
 22   -36.74248041254       -5.30       -4.17    1.0    104ms
 23   -36.74248010784   +   -6.52       -3.84    4.0    177ms
 24   -36.74248045086       -6.46       -4.11    2.0    124ms
 25   -36.74248061078       -6.80       -4.30    1.0   98.9ms
 26   -36.74248064293       -7.49       -4.44    1.0    105ms
 27   -36.74248052357   +   -6.92       -4.27    2.0    117ms
 28   -36.74247930838   +   -5.92       -4.00    3.0    144ms
 29   -36.74248062974       -5.88       -4.68    3.0    150ms
 30   -36.74248054050   +   -7.05       -4.46    3.0    145ms
 31   -36.74248061312       -7.14       -4.58    2.0    124ms
 32   -36.74248067152       -7.23       -5.23    2.0    121ms
 33   -36.74248067070   +   -9.09       -5.39    3.0    149ms
 34   -36.74248067235       -8.78       -5.72    2.0    111ms
 35   -36.74248067258       -9.63       -5.82    2.0    137ms
 36   -36.74248067266      -10.11       -5.97    1.0    118ms
 37   -36.74248067267      -10.97       -6.37    2.0    119ms
 38   -36.74248067267      -12.07       -6.54    3.0    134ms
 39   -36.74248067268      -11.68       -6.60    2.0    141ms
 40   -36.74248067268      -11.25       -7.05    2.0    109ms
 41   -36.74248067265   +  -10.56       -6.34    4.0    180ms
 42   -36.74248067268      -10.57       -7.12    3.0    161ms
 43   -36.74248067268      -12.70       -7.03    2.0    113ms
 44   -36.74248067268      -12.67       -7.56    2.0    121ms
 45   -36.74248067268      -13.19       -7.89    2.0    136ms
 46   -36.74248067268   +    -Inf       -7.78    2.0    124ms
 47   -36.74248067268   +  -13.30       -7.51    3.0    151ms
 48   -36.74248067268      -13.25       -7.97    2.0    117ms
 49   -36.74248067268   +    -Inf       -8.15    2.0    241ms
 50   -36.74248067268   +  -14.15       -8.24    2.0    137ms
 51   -36.74248067268   +    -Inf       -8.74    1.0    1.26s
 52   -36.74248067268   +    -Inf       -8.03    3.0    159ms
 53   -36.74248067268      -13.67       -8.87    4.0    164ms
 54   -36.74248067268   +    -Inf       -8.52    3.0    145ms
 55   -36.74248067268   +  -13.85       -8.78    3.0    144ms
 56   -36.74248067268   +    -Inf       -9.38    2.0    109ms
 57   -36.74248067268      -14.15       -9.28    3.0    138ms
 58   -36.74248067268   +  -14.15       -9.31    2.0    126ms
 59   -36.74248067268   +    -Inf       -9.74    2.0    122ms
 60   -36.74248067268   +  -13.85      -10.00    2.0    156ms
 61   -36.74248067268      -13.85      -10.35    1.0    117ms
 62   -36.74248067268   +    -Inf      -10.35    2.0    156ms
 63   -36.74248067268      -13.85      -10.92    2.0    123ms
 64   -36.74248067268   +  -13.85      -10.58    3.0    178ms
 65   -36.74248067268      -13.85      -10.73    3.0    161ms
 66   -36.74248067268   +  -13.67      -10.89    2.0    123ms
 67   -36.74248067268      -14.15      -10.57    3.0    138ms
 68   -36.74248067268   +    -Inf      -11.46    3.0    131ms
 69   -36.74248067268   +    -Inf      -11.48    2.0    131ms
 70   -36.74248067268   +  -14.15      -11.40    3.0    132ms
 71   -36.74248067268      -14.15      -11.27    3.0    145ms
 72   -36.74248067268   +    -Inf      -11.61    3.0    139ms
 73   -36.74248067268   +    -Inf      -12.16    2.0    112ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime 
---   ---------------   ---------   ---------   ----   ------
  1   -36.73497906879                   -0.88   11.0    920ms
  2   -36.74033098270       -2.27       -1.36    1.0    658ms
  3   -36.73953914904   +   -3.10       -1.63    3.0    134ms
  4   -36.74237475495       -2.55       -2.34    1.0   93.2ms
  5   -36.74243061982       -4.25       -2.67    6.0    120ms
  6   -36.74243743834       -5.17       -2.49    3.0    152ms
  7   -36.74247756053       -4.40       -3.06    1.0   94.9ms
  8   -36.74247539420   +   -5.66       -2.99    1.0   95.7ms
  9   -36.74247690567       -5.82       -3.10    1.0    104ms
 10   -36.74248039902       -5.46       -3.86    1.0   96.4ms
 11   -36.74248061884       -6.66       -4.02    5.0    138ms
 12   -36.74248063117       -7.91       -4.02    2.0    118ms
 13   -36.74248064688       -7.80       -4.06    1.0   98.2ms
 14   -36.74248064408   +   -8.55       -4.04    1.0    103ms
 15   -36.74248058493   +   -7.23       -3.87    1.0   98.2ms
 16   -36.74248061239       -7.56       -3.95    1.0    103ms
 17   -36.74248063615       -7.62       -4.06    1.0    103ms
 18   -36.74248064715       -7.96       -4.14    1.0   98.2ms
 19   -36.74248065152       -8.36       -4.18    1.0    103ms
 20   -36.74248066170       -7.99       -4.33    1.0   98.2ms
 21   -36.74248067206       -7.98       -5.04    1.0    103ms
 22   -36.74248067195   +   -9.94       -4.97    2.0    128ms
 23   -36.74248067218       -9.64       -5.07    1.0   98.8ms
 24   -36.74248067223      -10.32       -5.10    1.0    103ms
 25   -36.74248067266       -9.36       -5.60    1.0   98.2ms
 26   -36.74248067267      -10.98       -5.65    1.0    103ms
 27   -36.74248067268      -11.23       -5.96    1.0    103ms
 28   -36.74248067268      -11.47       -6.07    4.0    114ms
 29   -36.74248067267   +  -11.39       -5.93    2.0    117ms
 30   -36.74248067267   +  -11.64       -5.92    1.0    103ms
 31   -36.74248067267      -11.98       -5.93    1.0   98.7ms
 32   -36.74248067267      -12.44       -5.94    1.0    103ms
 33   -36.74248067268      -11.14       -6.43    1.0   98.6ms
 34   -36.74248067268      -12.35       -6.85    2.0    119ms
 35   -36.74248067268      -12.26       -7.13    2.0    123ms
 36   -36.74248067268      -13.55       -7.55    2.0    119ms
 37   -36.74248067268   +    -Inf       -7.70    2.0    138ms
 38   -36.74248067268      -14.15       -8.16    2.0    118ms
 39   -36.74248067268   +    -Inf       -8.39    2.0    134ms
 40   -36.74248067268   +    -Inf       -8.84    1.0    103ms
 41   -36.74248067268   +    -Inf       -9.15    3.0    136ms
 42   -36.74248067268      -14.15       -9.24    3.0    139ms
 43   -36.74248067268   +  -14.15       -9.92    1.0    103ms
 44   -36.74248067268      -13.85      -10.05    6.0    170ms
 45   -36.74248067268   +    -Inf      -10.52    2.0    104ms
 46   -36.74248067268   +  -13.85      -10.86    3.0    147ms
 47   -36.74248067268   +    -Inf      -11.21    2.0    108ms
 48   -36.74248067268      -13.85      -11.37    2.0    125ms
 49   -36.74248067268   +  -13.85      -11.75    2.0    245ms
 50   -36.74248067268   +    -Inf      -12.00    2.0    1.24s

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02449363196138

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421599995943

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723578692113507

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).