Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73380099725                   -0.88   11.0    337ms
  2   -36.71587417009   +   -1.75       -1.59    1.0   90.2ms
  3   -5.748644551249   +    1.49       -0.32    6.0    179ms
  4   -36.58200345178        1.49       -1.12    6.0    187ms
  5   -36.56995395716   +   -1.92       -1.41    3.0    128ms
  6   -36.23509437340   +   -0.48       -1.21    4.0    143ms
  7   -36.73308295903       -0.30       -1.83    3.0    127ms
  8   -36.74192852480       -2.05       -2.26    1.0   92.4ms
  9   -36.74165297800   +   -3.56       -2.27    2.0    125ms
 10   -36.74137117106   +   -3.55       -2.26    2.0    115ms
 11   -36.74226122486       -3.05       -2.64    2.0    107ms
 12   -36.74245325080       -3.72       -2.95    2.0    100ms
 13   -36.74247752858       -4.61       -3.30    2.0    123ms
 14   -36.74247759615       -7.17       -3.24    2.0    107ms
 15   -36.74248035922       -5.56       -3.87    1.0   93.8ms
 16   -36.74240495630   +   -4.12       -3.12    4.0    148ms
 17   -36.74247462130       -4.16       -3.59    3.0    143ms
 18   -36.74246472135   +   -5.00       -3.43    3.0    134ms
 19   -36.74247650518       -4.93       -3.72    3.0    133ms
 20   -36.74248027089       -5.42       -4.17    3.0    124ms
 21   -36.74248046928       -6.70       -4.23    2.0    110ms
 22   -36.74248063062       -6.79       -4.48    2.0    108ms
 23   -36.74248066528       -7.46       -4.99    2.0    126ms
 24   -36.74248066684       -8.81       -4.99    2.0    107ms
 25   -36.74248066906       -8.65       -5.04    2.0    100ms
 26   -36.74248067019       -8.95       -5.16    1.0   90.7ms
 27   -36.74248067133       -8.94       -5.47    1.0   93.9ms
 28   -36.74248064354   +   -7.56       -4.82    4.0    150ms
 29   -36.74248067252       -7.54       -5.76    4.0    142ms
 30   -36.74248067257      -10.26       -5.99    3.0    132ms
 31   -36.74248067225   +   -9.49       -5.72    3.0    134ms
 32   -36.74248067259       -9.47       -6.07    3.0    214ms
 33   -36.74248067268      -10.03       -6.66    2.0    755ms
 34   -36.74248067268   +  -11.35       -6.58    3.0    139ms
 35   -36.74248067268      -11.33       -6.86    2.0    106ms
 36   -36.74248067268      -12.51       -6.94    2.0    106ms
 37   -36.74248067268      -12.05       -7.22    1.0   91.5ms
 38   -36.74248067268      -12.50       -7.43    2.0    124ms
 39   -36.74248067268      -13.55       -7.72    2.0    107ms
 40   -36.74248067268   +  -12.32       -7.19    3.0    137ms
 41   -36.74248067268      -12.32       -7.68    3.0    131ms
 42   -36.74248067268   +  -14.15       -7.74    2.0    106ms
 43   -36.74248067268   +    -Inf       -8.13    2.0    100ms
 44   -36.74248067268   +  -13.85       -7.83    3.0    134ms
 45   -36.74248067268      -13.55       -7.91    3.0    132ms
 46   -36.74248067268   +  -13.45       -7.70    2.0    117ms
 47   -36.74248067268      -13.37       -8.69    3.0    135ms
 48   -36.74248067268   +  -13.85       -8.46    3.0    125ms
 49   -36.74248067268      -14.15       -8.32    3.0    136ms
 50   -36.74248067268      -14.15       -9.08    3.0    123ms
 51   -36.74248067268   +  -14.15       -9.37    3.0    143ms
 52   -36.74248067268      -14.15       -9.41    1.0   91.9ms
 53   -36.74248067268      -14.15       -9.68    2.0    105ms
 54   -36.74248067268   +  -13.85       -9.64    2.0    109ms
 55   -36.74248067268   +    -Inf      -10.20    1.0   95.4ms
 56   -36.74248067268      -14.15       -9.88    3.0    138ms
 57   -36.74248067268   +    -Inf       -9.50    4.0    158ms
 58   -36.74248067268   +  -14.15      -10.55    3.0    135ms
 59   -36.74248067268   +    -Inf      -10.84    3.0    137ms
 60   -36.74248067268   +  -14.15      -10.93    2.0    110ms
 61   -36.74248067268      -14.15      -10.58    3.0    124ms
 62   -36.74248067268   +    -Inf      -11.01    3.0    134ms
 63   -36.74248067268      -14.15      -11.38    2.0    110ms
 64   -36.74248067268   +  -14.15      -11.23    3.0    137ms
 65   -36.74248067268   +  -14.15      -11.69    1.0   91.1ms
 66   -36.74248067268      -14.15      -12.06    4.0    133ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73423390349                   -0.88   11.0    338ms
  2   -36.74024855333       -2.22       -1.36    1.0   91.8ms
  3   -36.74072280249       -3.32       -1.81    3.0    127ms
  4   -36.74217532766       -2.84       -2.14    1.0   92.7ms
  5   -36.74231517824       -3.85       -2.68    2.0   97.6ms
  6   -36.74243976912       -3.90       -2.55    6.0    146ms
  7   -36.74246695074       -4.57       -3.05    1.0   90.9ms
  8   -36.74247870596       -4.93       -3.22    2.0    103ms
  9   -36.74247963592       -6.03       -3.41    2.0    106ms
 10   -36.74248043285       -6.10       -4.00    1.0   91.5ms
 11   -36.74248065724       -6.65       -4.20    4.0    140ms
 12   -36.74248065143   +   -8.24       -4.27    2.0    103ms
 13   -36.74248067019       -7.73       -4.69    1.0   97.6ms
 14   -36.74248067203       -8.74       -5.02    4.0    113ms
 15   -36.74248067245       -9.38       -5.23    3.0    120ms
 16   -36.74248067262       -9.76       -5.59    2.0    108ms
 17   -36.74248067263      -11.07       -5.68    3.0    129ms
 18   -36.74248067268      -10.33       -6.28    1.0   96.6ms
 19   -36.74248067268      -12.53       -6.16    3.0    144ms
 20   -36.74248067268      -11.52       -6.40    1.0   96.6ms
 21   -36.74248067268      -12.27       -6.87    1.0   94.1ms
 22   -36.74248067268      -12.81       -7.02    3.0    129ms
 23   -36.74248067268      -13.07       -7.18    2.0    103ms
 24   -36.74248067268   +    -Inf       -7.35    2.0    102ms
 25   -36.74248067268      -14.15       -8.00    1.0   93.5ms
 26   -36.74248067268   +  -14.15       -7.87    4.0    149ms
 27   -36.74248067268      -13.67       -8.28    2.0    103ms
 28   -36.74248067268   +    -Inf       -8.54    2.0    102ms
 29   -36.74248067268   +  -14.15       -8.80    3.0    128ms
 30   -36.74248067268      -14.15       -8.92    2.0   99.4ms
 31   -36.74248067268   +    -Inf       -9.91    2.0    111ms
 32   -36.74248067268   +  -14.15       -9.76    5.0    164ms
 33   -36.74248067268      -14.15      -10.02    1.0   97.6ms
 34   -36.74248067268   +    -Inf      -10.46    2.0    121ms
 35   -36.74248067268   +    -Inf      -10.61    2.0    102ms
 36   -36.74248067268   +    -Inf      -11.08    2.0    107ms
 37   -36.74248067268   +  -13.85      -11.62    3.0    126ms
 38   -36.74248067268      -13.85      -12.01    5.0    146ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898072273

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421111420455

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723592816485761

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).