Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73356980262                   -0.88   11.0    351ms
  2   -36.62109064469   +   -0.95       -1.42    1.0   86.5ms
  3   +38.32251163025   +    1.87       -0.12    8.0    255ms
  4   -36.44475922495        1.87       -1.07    7.0    230ms
  5   -33.71008934292   +    0.44       -0.83    4.0    146ms
  6   -36.62029989054        0.46       -1.43    4.0    150ms
  7   -36.72140988354       -1.00       -1.71    2.0    112ms
  8   -36.73720171591       -1.80       -2.07    2.0    102ms
  9   -36.73870769914       -2.82       -1.97    2.0    129ms
 10   -36.74066667598       -2.71       -2.10    2.0    124ms
 11   -36.74035384004   +   -3.50       -2.23    2.0    115ms
 12   -36.74202584294       -2.78       -2.53    1.0   90.5ms
 13   -36.74247329049       -3.35       -2.89    2.0    109ms
 14   -36.74246673367   +   -5.18       -2.97    2.0    127ms
 15   -36.74064524346   +   -2.74       -2.41    3.0    133ms
 16   -36.74244416761       -2.74       -2.89    4.0    145ms
 17   -36.73690352773   +   -2.26       -2.18    3.0    143ms
 18   -36.74228995785       -2.27       -2.74    4.0    148ms
 19   -36.74249274849       -3.69       -3.31    3.0    125ms
 20   -36.74246768693   +   -4.60       -3.20    3.0    128ms
 21   -36.74251353764       -4.34       -3.76    2.0    109ms
 22   -36.74250364570   +   -5.00       -3.51    3.0    137ms
 23   -36.74251411611       -4.98       -3.98    2.0    106ms
 24   -36.74251463974       -6.28       -4.14    2.0    119ms
 25   -36.74251466543       -7.59       -4.33    1.0   91.2ms
 26   -36.74251476771       -6.99       -5.04    2.0    104ms
 27   -36.74251470327   +   -7.19       -4.57    3.0    162ms
 28   -36.74251476824       -7.19       -4.99    3.0    139ms
 29   -36.74251476791   +   -9.48       -5.15    2.0    105ms
 30   -36.74251477166       -8.43       -5.31    2.0    110ms
 31   -36.74251476462   +   -8.15       -5.07    2.0    119ms
 32   -36.74251477204       -8.13       -5.37    3.0    126ms
 33   -36.74251477291       -9.06       -5.91    1.0   94.7ms
 34   -36.74251476867   +   -8.37       -5.24    4.0    150ms
 35   -36.74251477286       -8.38       -5.85    3.0    141ms
 36   -36.74251477300       -9.87       -6.20    1.0   94.8ms
 37   -36.74251477302      -10.58       -6.37    3.0    138ms
 38   -36.74251477304      -10.87       -6.64    3.0    114ms
 39   -36.74251477303   +  -11.97       -6.74    2.0    127ms
 40   -36.74251477303   +  -11.09       -6.48    3.0    134ms
 41   -36.74251477304      -10.98       -7.24    2.0    118ms
 42   -36.74251477304      -13.37       -7.30    3.0    142ms
 43   -36.74251477304   +  -12.28       -7.01    2.0    121ms
 44   -36.74251477304   +  -12.81       -7.01    3.0    132ms
 45   -36.74251477304      -12.25       -7.32    3.0    138ms
 46   -36.74251477304      -12.60       -7.87    2.0    106ms
 47   -36.74251477304   +  -12.72       -7.33    3.0    143ms
 48   -36.74251477304      -12.70       -8.13    3.0    132ms
 49   -36.74251477304      -14.15       -8.25    2.0    120ms
 50   -36.74251477304      -14.15       -8.62    2.0    110ms
 51   -36.74251477304   +    -Inf       -8.59    2.0    124ms
 52   -36.74251477304   +  -13.85       -8.96    2.0    110ms
 53   -36.74251477304      -13.85       -9.14    2.0    106ms
 54   -36.74251477304   +    -Inf       -9.37    1.0   97.3ms
 55   -36.74251477304   +  -14.15       -9.50    2.0    129ms
 56   -36.74251477304      -13.85       -9.39    2.0    106ms
 57   -36.74251477304   +  -14.15       -9.82    2.0    110ms
 58   -36.74251477304   +    -Inf       -9.85    2.0    101ms
 59   -36.74251477304   +  -13.85       -9.96    2.0    116ms
 60   -36.74251477304      -13.85      -10.24    2.0    104ms
 61   -36.74251477304   +  -14.15       -9.78    3.0    143ms
 62   -36.74251477304      -14.15      -10.23    3.0    131ms
 63   -36.74251477304   +    -Inf      -10.85    2.0    112ms
 64   -36.74251477304   +  -14.15      -10.94    3.0    130ms
 65   -36.74251477304   +  -14.15      -10.44    3.0    139ms
 66   -36.74251477304      -13.85      -10.64    3.0    134ms
 67   -36.74251477304   +    -Inf      -11.14    2.0    110ms
 68   -36.74251477304   +    -Inf      -10.97    2.0    117ms
 69   -36.74251477304   +  -14.15      -11.17    2.0    102ms
 70   -36.74251477304      -14.15      -11.53    1.0   91.2ms
 71   -36.74251477304   +    -Inf      -11.68    2.0    116ms
 72   -36.74251477304   +    -Inf      -11.58    3.0    157ms
 73   -36.74251477304   +    -Inf      -11.82    2.0    106ms
 74   -36.74251477304   +    -Inf      -12.21    2.0    104ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73177713461                   -0.88   11.0    332ms
  2   -36.73958079622       -2.11       -1.36    1.0   91.5ms
  3   -36.74036340368       -3.11       -1.75    3.0    113ms
  4   -36.74211190967       -2.76       -2.14    5.0    109ms
  5   -36.74234156758       -3.64       -2.54    2.0    137ms
  6   -36.74244811320       -3.97       -2.50    2.0    126ms
  7   -36.74247939206       -4.50       -2.83    1.0   89.8ms
  8   -36.74250905318       -4.53       -3.17    1.0   94.2ms
  9   -36.74251196477       -5.54       -3.31    1.0   90.9ms
 10   -36.74251453254       -5.59       -4.01    2.0    100ms
 11   -36.74251467417       -6.85       -4.26    4.0    143ms
 12   -36.74251476871       -7.02       -4.49    2.0    105ms
 13   -36.74251476473   +   -8.40       -4.81    3.0    107ms
 14   -36.74251476789       -8.50       -4.96    3.0    141ms
 15   -36.74251477016       -8.64       -5.03    1.0    111ms
 16   -36.74251477284       -8.57       -5.50    2.0    102ms
 17   -36.74251477280   +  -10.44       -5.57    3.0    122ms
 18   -36.74251477301       -9.67       -6.00    1.0   96.7ms
 19   -36.74251477304      -10.69       -6.55    3.0    139ms
 20   -36.74251477304      -11.80       -6.92    5.0    120ms
 21   -36.74251477304      -12.97       -7.11    2.0    129ms
 22   -36.74251477304      -13.37       -7.32    1.0   96.5ms
 23   -36.74251477304      -13.37       -7.60    2.0   97.8ms
 24   -36.74251477304      -13.37       -8.03    3.0    140ms
 25   -36.74251477304   +  -14.15       -8.16    2.0    106ms
 26   -36.74251477304   +    -Inf       -8.60    2.0   99.2ms
 27   -36.74251477304   +    -Inf       -8.56    3.0    135ms
 28   -36.74251477304   +  -13.85       -8.92    1.0   96.5ms
 29   -36.74251477304      -13.85       -9.38    3.0    130ms
 30   -36.74251477304   +    -Inf       -9.45    2.0    126ms
 31   -36.74251477304   +  -14.15       -9.75    1.0   96.6ms
 32   -36.74251477304   +    -Inf      -10.06    3.0    131ms
 33   -36.74251477304      -14.15      -10.54    2.0    129ms
 34   -36.74251477304   +    -Inf      -10.90    2.0    130ms
 35   -36.74251477304   +  -13.85      -11.31    1.0   96.8ms
 36   -36.74251477304   +    -Inf      -11.29    3.0    139ms
 37   -36.74251477304   +    -Inf      -11.57    1.0   92.8ms
 38   -36.74251477304   +    -Inf      -11.93    2.0    111ms
 39   -36.74251477304      -13.85      -11.97    3.0    140ms
 40   -36.74251477304   +    -Inf      -12.43    1.0   94.1ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448804311329

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244210129320685

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723586142597708

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).