Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73236690101                   -0.88   12.0    352ms
  2   -36.36973448476   +   -0.44       -1.24    1.0   88.7ms
  3   +129.3512968378   +    2.22        0.06   17.0    365ms
  4   -32.68375703113        2.21       -0.69   10.0    277ms
  5   -33.83685453077        0.06       -0.80    4.0    156ms
  6   -32.56203414125   +    0.11       -0.73    4.0    158ms
  7   -36.70960264946        0.62       -1.53    3.0    142ms
  8   -36.72089355278       -1.95       -1.74    2.0    116ms
  9   -36.73563052463       -1.83       -1.85    2.0    112ms
 10   -36.74159893973       -2.22       -2.10    1.0   91.3ms
 11   -36.73882074020   +   -2.56       -2.11    3.0    119ms
 12   -36.74070326216       -2.73       -2.26    1.0   93.1ms
 13   -36.74045234619   +   -3.60       -2.30    1.0   92.6ms
 14   -36.74160814624       -2.94       -2.47    1.0   98.3ms
 15   -36.73649975112   +   -2.29       -2.16    3.0    116ms
 16   -36.69239700707   +   -1.36       -1.70    4.0    164ms
 17   -36.74228493955       -1.30       -2.72    3.0    143ms
 18   -36.74208859945   +   -3.71       -2.57    2.0    131ms
 19   -36.74230186718       -3.67       -2.87    2.0    108ms
 20   -36.74242398075       -3.91       -3.16    2.0    108ms
 21   -36.74244226957       -4.74       -3.19    3.0    133ms
 22   -36.74247653005       -4.47       -3.53    2.0   97.8ms
 23   -36.74247663863       -6.96       -3.70    2.0    113ms
 24   -36.74247584982   +   -6.10       -3.71    3.0    129ms
 25   -36.74248023038       -5.36       -4.12    2.0    107ms
 26   -36.74248056823       -6.47       -4.47    3.0    134ms
 27   -36.74248041985   +   -6.83       -4.19    3.0    135ms
 28   -36.74248064009       -6.66       -4.74    2.0    113ms
 29   -36.74248044956   +   -6.72       -4.38    3.0    133ms
 30   -36.74248066825       -6.66       -5.09    3.0    138ms
 31   -36.74248067094       -8.57       -5.12    2.0    108ms
 32   -36.74248067167       -9.14       -5.37    2.0    107ms
 33   -36.74248066417   +   -8.12       -4.99    3.0    136ms
 34   -36.74248067249       -8.08       -5.86    2.0    125ms
 35   -36.74248067264       -9.83       -5.87    3.0    135ms
 36   -36.74248067173   +   -9.04       -5.57    3.0    132ms
 37   -36.74248067259       -9.07       -5.99    3.0    138ms
 38   -36.74248067266      -10.13       -6.33    1.0   93.0ms
 39   -36.74248067267      -10.92       -6.47    2.0    107ms
 40   -36.74248067268      -11.27       -6.66    3.0    126ms
 41   -36.74248067242   +   -9.58       -5.84    3.0    157ms
 42   -36.74248067268       -9.58       -6.93    3.0    144ms
 43   -36.74248067268      -12.03       -7.32    1.0   99.5ms
 44   -36.74248067268      -12.79       -7.27    3.0    136ms
 45   -36.74248067268      -13.85       -7.43    2.0    109ms
 46   -36.74248067268      -13.45       -7.73    2.0    110ms
 47   -36.74248067268   +    -Inf       -7.98    2.0    102ms
 48   -36.74248067268   +    -Inf       -7.86    2.0    131ms
 49   -36.74248067268   +    -Inf       -7.97    2.0    110ms
 50   -36.74248067268   +  -14.15       -8.20    2.0    108ms
 51   -36.74248067268      -14.15       -8.29    3.0    134ms
 52   -36.74248067268   +    -Inf       -8.78    2.0    102ms
 53   -36.74248067268      -13.67       -8.03    4.0    172ms
 54   -36.74248067268   +    -Inf       -9.08    4.0    159ms
 55   -36.74248067268   +  -13.85       -9.44    1.0    214ms
 56   -36.74248067268      -13.85       -9.22    3.0    142ms
 57   -36.74248067268   +  -13.85       -9.74    2.0    1.21s
 58   -36.74248067268      -13.85       -9.61    3.0    134ms
 59   -36.74248067268   +  -14.15       -9.97    2.0    109ms
 60   -36.74248067268   +  -14.15       -9.95    2.0    108ms
 61   -36.74248067268   +    -Inf      -10.44    2.0    103ms
 62   -36.74248067268   +    -Inf      -10.46    2.0    127ms
 63   -36.74248067268   +    -Inf      -10.25    2.0    112ms
 64   -36.74248067268   +    -Inf      -10.62    2.0    133ms
 65   -36.74248067268      -13.85      -10.19    3.0    164ms
 66   -36.74248067268   +    -Inf      -11.08    3.0    152ms
 67   -36.74248067268   +  -14.15      -10.81    3.0    161ms
 68   -36.74248067268   +  -13.85      -11.62    2.0    133ms
 69   -36.74248067268      -13.67      -11.62    3.0    136ms
 70   -36.74248067268   +  -13.85      -11.51    3.0    127ms
 71   -36.74248067268      -13.85      -12.12    2.0    108ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73232735757                   -0.88   11.0    340ms
  2   -36.73969462456       -2.13       -1.36    1.0   98.7ms
  3   -36.73873150652   +   -3.02       -1.58    3.0    122ms
  4   -36.74227607858       -2.45       -2.27    1.0   91.2ms
  5   -36.74242452012       -3.83       -2.47    3.0    135ms
  6   -36.74245501251       -4.52       -2.60    6.0    118ms
  7   -36.74246170976       -5.17       -2.75    1.0   98.2ms
  8   -36.74247712705       -4.81       -3.15    1.0   93.7ms
  9   -36.74247915094       -5.69       -3.33    4.0    122ms
 10   -36.74248049861       -5.87       -3.96    2.0    104ms
 11   -36.74248063218       -6.87       -4.23    3.0    139ms
 12   -36.74248066269       -7.52       -4.64    2.0    106ms
 13   -36.74248065871   +   -8.40       -4.86    2.0    129ms
 14   -36.74248067257       -7.86       -5.51    2.0    117ms
 15   -36.74248067247   +   -9.99       -5.65    3.0    135ms
 16   -36.74248067268       -9.68       -6.24    2.0    110ms
 17   -36.74248067265   +  -10.47       -6.17    3.0    141ms
 18   -36.74248067268      -10.45       -6.79    2.0    116ms
 19   -36.74248067268      -12.18       -6.97    3.0    135ms
 20   -36.74248067268      -12.55       -7.26    1.0    101ms
 21   -36.74248067268      -12.79       -7.58    3.0    118ms
 22   -36.74248067268   +    -Inf       -7.73    4.0    131ms
 23   -36.74248067268      -13.85       -8.24    1.0   95.8ms
 24   -36.74248067268   +    -Inf       -8.36    3.0    141ms
 25   -36.74248067268   +  -13.85       -8.66    1.0   95.7ms
 26   -36.74248067268      -13.85       -9.12    3.0    116ms
 27   -36.74248067268   +    -Inf       -9.30    3.0    150ms
 28   -36.74248067268   +    -Inf       -9.93    2.0    101ms
 29   -36.74248067268   +    -Inf       -9.89    4.0    158ms
 30   -36.74248067268   +    -Inf      -10.44    2.0    111ms
 31   -36.74248067268   +    -Inf      -10.47    3.0    145ms
 32   -36.74248067268      -14.15      -11.03    1.0   95.8ms
 33   -36.74248067268   +  -13.85      -11.10    2.0    134ms
 34   -36.74248067268      -14.15      -11.41    1.0   95.8ms
 35   -36.74248067268   +  -13.85      -11.76    4.0    124ms
 36   -36.74248067268      -13.85      -12.06    3.0    136ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898024415

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113701844

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723586500758022

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).