Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73221949253                   -0.88   13.0    362ms
  2   -36.58600182625   +   -0.84       -1.37    1.0   94.2ms
  3   +43.37654535133   +    1.90       -0.11   22.0    309ms
  4   -36.52967798537        1.90       -1.07   11.0    323ms
  5   -36.65098831795       -0.92       -1.42    2.0    128ms
  6   -35.47002956280   +    0.07       -1.01    4.0    160ms
  7   -36.64274469298        0.07       -1.48    3.0    151ms
  8   -36.73965999663       -1.01       -2.02    2.0    111ms
  9   -36.74072817836       -2.97       -2.13    2.0    134ms
 10   -36.73928790844   +   -2.84       -2.01    2.0    115ms
 11   -36.74203387662       -2.56       -2.41    2.0    123ms
 12   -36.74220522244       -3.77       -2.52    1.0   96.3ms
 13   -36.74230800765       -3.99       -2.74    2.0    113ms
 14   -36.74246514974       -3.80       -2.97    2.0    136ms
 15   -36.73826113196   +   -2.38       -2.25    3.0    154ms
 16   -36.74238927144       -2.38       -2.94    3.0    151ms
 17   -36.74245625367       -4.17       -3.19    2.0    118ms
 18   -36.74038987620   +   -2.68       -2.40    4.0    167ms
 19   -36.74225694389       -2.73       -2.81    3.0    154ms
 20   -36.74247890011       -3.65       -3.73    3.0    142ms
 21   -36.74247167557   +   -5.14       -3.50    3.0    153ms
 22   -36.74247958568       -5.10       -3.73    2.0    128ms
 23   -36.74248020966       -6.20       -4.05    2.0    120ms
 24   -36.74248054887       -6.47       -4.41    1.0   95.9ms
 25   -36.74248066711       -6.93       -4.86    2.0    135ms
 26   -36.74248067204       -8.31       -5.24    2.0    108ms
 27   -36.74248066974   +   -8.64       -5.29    3.0    146ms
 28   -36.74248066506   +   -8.33       -5.02    3.0    132ms
 29   -36.74248067243       -8.13       -5.72    2.0    117ms
 30   -36.74248066734   +   -8.29       -5.18    4.0    172ms
 31   -36.74248067253       -8.28       -5.81    3.0    144ms
 32   -36.74248067260      -10.16       -6.01    2.0    131ms
 33   -36.74248067262      -10.74       -6.12    2.0    118ms
 34   -36.74248067263      -11.17       -6.01    3.0    135ms
 35   -36.74248067268      -10.26       -6.69    1.0    101ms
 36   -36.74248067268   +  -11.29       -6.43    3.0    148ms
 37   -36.74248067268      -11.38       -6.44    2.0    130ms
 38   -36.74248067268      -11.85       -6.94    2.0    115ms
 39   -36.74248067268      -12.22       -7.36    1.0    101ms
 40   -36.74248067268   +  -12.67       -7.18    2.0    132ms
 41   -36.74248067268      -12.48       -7.82    2.0    117ms
 42   -36.74248067268   +  -12.58       -7.31    4.0    161ms
 43   -36.74248067268      -13.37       -7.34    4.0    174ms
 44   -36.74248067268   +  -13.37       -7.27    3.0    142ms
 45   -36.74248067268      -12.67       -7.60    4.0    163ms
 46   -36.74248067268      -13.37       -7.91    3.0    134ms
 47   -36.74248067268      -13.85       -8.64    2.0    118ms
 48   -36.74248067268   +    -Inf       -8.56    3.0    148ms
 49   -36.74248067268   +    -Inf       -8.46    2.0    118ms
 50   -36.74248067268      -13.85       -9.05    2.0    105ms
 51   -36.74248067268   +  -13.85       -9.23    3.0    122ms
 52   -36.74248067268      -14.15       -9.21    2.0    131ms
 53   -36.74248067268   +  -14.15       -9.65    2.0    117ms
 54   -36.74248067268      -13.85       -9.49    2.0    115ms
 55   -36.74248067268   +  -13.85       -9.55    2.0    118ms
 56   -36.74248067268   +    -Inf       -9.87    2.0    113ms
 57   -36.74248067268   +    -Inf       -9.45    3.0    143ms
 58   -36.74248067268      -13.85       -9.97    3.0    150ms
 59   -36.74248067268   +  -13.85       -9.63    3.0    144ms
 60   -36.74248067268   +    -Inf      -10.06    3.0    139ms
 61   -36.74248067268      -14.15      -10.98    1.0    100ms
 62   -36.74248067268   +  -14.15      -10.79    4.0    179ms
 63   -36.74248067268      -13.85      -11.09    2.0    118ms
 64   -36.74248067268   +  -13.85      -11.28    2.0    113ms
 65   -36.74248067268      -13.85      -11.35    1.0    100ms
 66   -36.74248067268   +  -13.85      -11.52    1.0   96.0ms
 67   -36.74248067268   +    -Inf      -11.49    2.0    129ms
 68   -36.74248067268      -13.85      -11.44    3.0    135ms
 69   -36.74248067268   +  -13.85      -11.47    2.0    116ms
 70   -36.74248067268      -13.85      -11.77    2.0    124ms
 71   -36.74248067268   +  -13.85      -11.45    3.0    144ms
 72   -36.74248067268      -14.15      -12.20    3.0    134ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73427987294                   -0.88   11.0    347ms
  2   -36.74020615367       -2.23       -1.36    1.0   94.1ms
  3   -36.74032953200       -3.91       -1.74    2.0    114ms
  4   -36.74226263702       -2.71       -2.25    2.0   94.5ms
  5   -36.74237065937       -3.97       -2.65    3.0    134ms
  6   -36.74237872658       -5.09       -2.42    3.0    109ms
  7   -36.74244693850       -4.17       -2.88    1.0   95.9ms
  8   -36.74247245844       -4.59       -3.41    1.0   91.9ms
  9   -36.74248019386       -5.11       -3.66    3.0    135ms
 10   -36.74248048921       -6.53       -4.03    2.0   97.9ms
 11   -36.74248055944       -7.15       -4.19    5.0    120ms
 12   -36.74248066285       -6.99       -4.80    2.0    109ms
 13   -36.74248067197       -8.04       -5.15    3.0    138ms
 14   -36.74248067235       -9.41       -5.41    5.0    118ms
 15   -36.74248067249       -9.85       -5.63    2.0    122ms
 16   -36.74248067267       -9.74       -6.10    2.0    105ms
 17   -36.74248067268      -11.20       -6.45    2.0    133ms
 18   -36.74248067268   +  -12.33       -6.65    1.0   94.8ms
 19   -36.74248067268      -11.84       -7.11    2.0    114ms
 20   -36.74248067268      -13.07       -7.08    3.0    133ms
 21   -36.74248067268      -13.85       -7.39    1.0    100ms
 22   -36.74248067268      -14.15       -7.58    2.0   99.4ms
 23   -36.74248067268      -13.67       -7.87    1.0   99.1ms
 24   -36.74248067268      -14.15       -7.98    3.0    133ms
 25   -36.74248067268   +  -14.15       -8.35    1.0   98.6ms
 26   -36.74248067268   +    -Inf       -8.66    3.0    115ms
 27   -36.74248067268   +    -Inf       -8.90    3.0    138ms
 28   -36.74248067268   +    -Inf       -9.36    1.0   94.2ms
 29   -36.74248067268   +    -Inf       -9.44    4.0    142ms
 30   -36.74248067268   +    -Inf       -9.88    1.0   94.2ms
 31   -36.74248067268      -14.15      -10.14    3.0    119ms
 32   -36.74248067268   +    -Inf      -10.62    3.0    138ms
 33   -36.74248067268   +  -14.15      -10.89    6.0    124ms
 34   -36.74248067268   +    -Inf      -11.02    2.0    127ms
 35   -36.74248067268   +    -Inf      -11.22    1.0   99.2ms
 36   -36.74248067268   +    -Inf      -11.46    1.0   94.1ms
 37   -36.74248067268   +    -Inf      -11.67    1.0   98.3ms
 38   -36.74248067268      -13.85      -12.22    2.0    120ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02450835507706

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24423146541708

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.7235868235609715

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).